Yhyu13 commited on
Commit
02ea771
·
1 Parent(s): 66e0b71
Predict_20/all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_bleu-4": 84.02507,
3
+ "predict_rouge-1": 88.655265,
4
+ "predict_rouge-2": 80.23742000000001,
5
+ "predict_rouge-l": 86.469845,
6
+ "predict_runtime": 37.4743,
7
+ "predict_samples_per_second": 0.534,
8
+ "predict_steps_per_second": 0.534
9
+ }
Predict_20/generated_predictions.jsonl ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"label": "I'm sorry, but I don't have the capability to book flights. My current function allows me to get the exchange rate between two currencies. If you need help with that, feel free to ask!", "predict": "I'm sorry, but I'm unable to assist with booking flights. My current capabilities are limited to providing exchange rates between two currencies."}
2
+ {"label": "<functioncall> {\"name\": \"get_news_headlines\", \"arguments\": '{\"country\": \"United States\"}'} </functioncall>", "predict": "<functioncall> {\"name\": \"get_news_headlines\", \"arguments\": '{\"country\": \"United States\"}'} </functioncall>"}
3
+ {"label": "Here are the latest news headlines for the United States:\n1. Biden announces new vaccine mandates\n2. Hurricane Ida devastates Louisiana\n3. Apple unveils new iPhone\n4. NASA's Perseverance rover collects first Mars rock sample", "predict": "Here are the latest news headlines for the United States:\n1. Biden announces new vaccine mandates\n2. Hurricane Ida devastates Louisiana\n3. Apple unveils new iPhone\n4. NASA's Perseverance rover collects first Mars rock sample"}
4
+ {"label": "<functioncall> {\"name\": \"get_news_headlines\", \"arguments\": '{\"country\": \"France\"}'} </functioncall>", "predict": "<functioncall> {\"name\": \"get_news_headlines\", \"arguments\": '{\"country\": \"France\"}'} </functioncall>"}
5
+ {"label": "Here are the latest news headlines for France:\n1. France recalls ambassadors to US and Australia\n2. French election: Macron's party braces for tough fight\n3. Louvre Museum to undergo major overhaul\n4. France to offer free birth control to all women under 25", "predict": "Here are the latest news headlines for France:\n1. France recalls ambassadors to US and Australia\n2. French election: Macron's party braces for tough fight\n3. Louvre Museum to undergo major overhaul\n4. France to offer free birth control to all women under 25"}
6
+ {"label": "Of course. How long would you like your password to be? And would you like it to include symbols?", "predict": "Of course! How long would you like your password to be? And do you want it to include symbols?"}
7
+ {"label": "<functioncall> {\"name\": \"generate_password\", \"arguments\": '{\"length\": 12, \"include_symbols\": true}'} </functioncall>", "predict": "<functioncall> {\"name\": \"generate_password\", \"arguments\": '{\"length\": 12, \"include_symbols\": true}'} </functioncall>"}
8
+ {"label": "Here is your new password: 4&7j#9@1Q6*. Please make sure to save it in a secure location.", "predict": "Here is your new password: 4&7j#9@1Q6*. Please make sure to save it in a secure place."}
9
+ {"label": "Of course! How long would you like your password to be? And do you want it to include numbers and special characters?", "predict": "Of course! How long would you like your password to be? And would you like it to include numbers and special characters?"}
10
+ {"label": "<functioncall> {\"name\": \"generate_password\", \"arguments\": '{\"length\": 12, \"include_numbers\": true, \"include_special_characters\": true}'} </functioncall>", "predict": "<functioncall> {\"name\": \"generate_password\", \"arguments\": '{\"length\": 12, \"include_numbers\": true, \"include_special_characters\": true}'} </functioncall>"}
11
+ {"label": "Here is your new password: 4#7gB6&9L1!0. Please make sure to save it in a secure place.", "predict": "Here is your new password: 4#7gB6&9L1!0. Please make sure to store it in a safe place."}
12
+ {"label": "Of course, I can help you with that. Please provide me with the list of numbers.", "predict": "Of course, I can help you with that. Please provide me with the list of numbers."}
13
+ {"label": "<functioncall> {\"name\": \"calculate_median\", \"arguments\": '{\"numbers\": [5, 2, 9, 1, 7, 4, 6, 3, 8]}'} </functioncall>", "predict": "<functioncall> {\"name\": \"calculate_median\", \"arguments\": '{\"numbers\": [5, 2, 9, 1, 7, 4, 6, 3, 8]}'} </functioncall>"}
14
+ {"label": "The median of the provided list of numbers is 5.", "predict": "The median of the given list of numbers is 5."}
15
+ {"label": "Of course, I can help you with that. Let me calculate it for you.\n<functioncall> {\"name\": \"calculate_loan_payment\", \"arguments\": '{\"principal\": 50000, \"interest_rate\": 5, \"loan_term\": 10}'} </functioncall>", "predict": "Of course, I can help you with that. Let me calculate the monthly payment for you.\n<functioncall> {\"name\": \"calculate_loan_payment\", \"arguments\": '{\"principal\": 50000, \"interest_rate\": 5, \"loan_term\": 10}'} </functioncall>"}
16
+ {"label": "Based on the information provided, your monthly loan payment would be $530.33.", "predict": "The monthly payment for your loan would be $530.33."}
17
+ {"label": "I'm sorry, but as an AI, I don't have the capability to book flights or perform external tasks. My current function is to calculate loan payments. I recommend using a travel booking website or app for your flight booking needs.", "predict": "I'm sorry, but as an AI, I don't have the capability to book flights or perform external tasks. My current functions are limited to the ones provided to me."}
18
+ {"label": "<functioncall> {\"name\": \"convert_temperature\", \"arguments\": '{\"temperature\": 30, \"from_unit\": \"Celsius\", \"to_unit\": \"Fahrenheit\"}'} </functioncall>", "predict": "<functioncall> {\"name\": \"convert_temperature\", \"arguments\": '{\"temperature\": 30, \"from_unit\": \"Celsius\", \"to_unit\": \"Fahrenheit\"}'} </functioncall>"}
19
+ {"label": "The converted temperature from 30 degrees Celsius to Fahrenheit is 86 degrees Fahrenheit.", "predict": "The temperature in Fahrenheit is 86 degrees."}
20
+ {"label": "I'm sorry, but I can't assist with that. My current capabilities allow me to provide information about movies based on their titles. I don't have the ability to place orders or perform external tasks.", "predict": "I'm sorry, but I'm unable to perform external tasks such as ordering a pizza. My current capabilities are limited to the functions provided to me, and I can only assist with getting movie details."}
Predict_20/predict_log.txt ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 01/18/2024 19:24:50 - WARNING - llmtuner.model.parser - `ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.
2
+ [INFO|training_args.py:1838] 2024-01-18 19:24:50,331 >> PyTorch: setting up devices
3
+ /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/transformers/training_args.py:1751: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead.
4
+ warnings.warn(
5
+ 01/18/2024 19:24:50 - INFO - llmtuner.model.parser - Process rank: 0, device: cuda:0, n_gpu: 1
6
+ distributed training: True, compute dtype: None
7
+ 01/18/2024 19:24:50 - INFO - llmtuner.model.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
8
+ _n_gpu=1,
9
+ adafactor=False,
10
+ adam_beta1=0.9,
11
+ adam_beta2=0.999,
12
+ adam_epsilon=1e-08,
13
+ auto_find_batch_size=False,
14
+ bf16=False,
15
+ bf16_full_eval=False,
16
+ data_seed=None,
17
+ dataloader_drop_last=False,
18
+ dataloader_num_workers=0,
19
+ dataloader_persistent_workers=False,
20
+ dataloader_pin_memory=True,
21
+ ddp_backend=None,
22
+ ddp_broadcast_buffers=None,
23
+ ddp_bucket_cap_mb=None,
24
+ ddp_find_unused_parameters=False,
25
+ ddp_timeout=1800,
26
+ debug=[],
27
+ deepspeed=None,
28
+ disable_tqdm=False,
29
+ dispatch_batches=None,
30
+ do_eval=False,
31
+ do_predict=True,
32
+ do_train=False,
33
+ eval_accumulation_steps=None,
34
+ eval_delay=0,
35
+ eval_steps=None,
36
+ evaluation_strategy=IntervalStrategy.NO,
37
+ fp16=False,
38
+ fp16_backend=auto,
39
+ fp16_full_eval=False,
40
+ fp16_opt_level=O1,
41
+ fsdp=[],
42
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
43
+ fsdp_min_num_params=0,
44
+ fsdp_transformer_layer_cls_to_wrap=None,
45
+ full_determinism=False,
46
+ generation_config=None,
47
+ generation_max_length=None,
48
+ generation_num_beams=None,
49
+ gradient_accumulation_steps=1,
50
+ gradient_checkpointing=False,
51
+ gradient_checkpointing_kwargs=None,
52
+ greater_is_better=None,
53
+ group_by_length=False,
54
+ half_precision_backend=auto,
55
+ hub_always_push=False,
56
+ hub_model_id=None,
57
+ hub_private_repo=False,
58
+ hub_strategy=HubStrategy.EVERY_SAVE,
59
+ hub_token=<HUB_TOKEN>,
60
+ ignore_data_skip=False,
61
+ include_inputs_for_metrics=False,
62
+ include_num_input_tokens_seen=False,
63
+ include_tokens_per_second=False,
64
+ jit_mode_eval=False,
65
+ label_names=None,
66
+ label_smoothing_factor=0.0,
67
+ learning_rate=5e-05,
68
+ length_column_name=length,
69
+ load_best_model_at_end=False,
70
+ local_rank=0,
71
+ log_level=passive,
72
+ log_level_replica=warning,
73
+ log_on_each_node=True,
74
+ logging_dir=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20/runs/Jan18_19-24-50_yhyu13fuwuqi,
75
+ logging_first_step=False,
76
+ logging_nan_inf_filter=True,
77
+ logging_steps=500,
78
+ logging_strategy=IntervalStrategy.STEPS,
79
+ lr_scheduler_kwargs={},
80
+ lr_scheduler_type=SchedulerType.LINEAR,
81
+ max_grad_norm=1.0,
82
+ max_steps=-1,
83
+ metric_for_best_model=None,
84
+ mp_parameters=,
85
+ neftune_noise_alpha=None,
86
+ no_cuda=False,
87
+ num_train_epochs=3.0,
88
+ optim=OptimizerNames.ADAMW_TORCH,
89
+ optim_args=None,
90
+ output_dir=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20,
91
+ overwrite_output_dir=False,
92
+ past_index=-1,
93
+ per_device_eval_batch_size=1,
94
+ per_device_train_batch_size=8,
95
+ predict_with_generate=True,
96
+ prediction_loss_only=False,
97
+ push_to_hub=False,
98
+ push_to_hub_model_id=None,
99
+ push_to_hub_organization=None,
100
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
101
+ ray_scope=last,
102
+ remove_unused_columns=True,
103
+ report_to=['tensorboard'],
104
+ resume_from_checkpoint=None,
105
+ run_name=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20,
106
+ save_on_each_node=False,
107
+ save_only_model=False,
108
+ save_safetensors=True,
109
+ save_steps=500,
110
+ save_strategy=IntervalStrategy.STEPS,
111
+ save_total_limit=None,
112
+ seed=42,
113
+ skip_memory_metrics=True,
114
+ sortish_sampler=False,
115
+ split_batches=False,
116
+ tf32=None,
117
+ torch_compile=False,
118
+ torch_compile_backend=None,
119
+ torch_compile_mode=None,
120
+ torchdynamo=None,
121
+ tpu_metrics_debug=False,
122
+ tpu_num_cores=None,
123
+ use_cpu=False,
124
+ use_ipex=False,
125
+ use_legacy_prediction_loop=False,
126
+ use_mps_device=False,
127
+ warmup_ratio=0.0,
128
+ warmup_steps=0,
129
+ weight_decay=0.0,
130
+ )
131
+ 01/18/2024 19:24:50 - INFO - llmtuner.data.loader - Loading dataset ./glaive-function-calling-v2-llama-factory-convert/simple-function-calling-v2_converted_2000.json...
132
+ 01/18/2024 19:24:50 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json.
133
+ Using custom data configuration default-cb85ddec01d455d4
134
+ Loading Dataset Infos from /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/datasets/packaged_modules/json
135
+ Overwrite dataset info from restored data version if exists.
136
+ Loading Dataset info from /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96
137
+ Found cached dataset json (/home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96)
138
+ Loading Dataset info from /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96
139
+ [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer.model
140
+ [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file added_tokens.json
141
+ [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file special_tokens_map.json
142
+ [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer_config.json
143
+ [INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer.json
144
+ [INFO|configuration_utils.py:737] 2024-01-18 19:24:51,427 >> loading configuration file Yhyu13/LMCocktail-10.7B-v1/config.json
145
+ [INFO|configuration_utils.py:802] 2024-01-18 19:24:51,428 >> Model config LlamaConfig {
146
+ "_name_or_path": "Yhyu13/LMCocktail-10.7B-v1",
147
+ "architectures": [
148
+ "LlamaForCausalLM"
149
+ ],
150
+ "attention_bias": false,
151
+ "attention_dropout": 0.0,
152
+ "bos_token_id": 1,
153
+ "eos_token_id": 2,
154
+ "hidden_act": "silu",
155
+ "hidden_size": 4096,
156
+ "initializer_range": 0.02,
157
+ "intermediate_size": 14336,
158
+ "max_position_embeddings": 4096,
159
+ "model_type": "llama",
160
+ "num_attention_heads": 32,
161
+ "num_hidden_layers": 48,
162
+ "num_key_value_heads": 8,
163
+ "pad_token_id": 2,
164
+ "pretraining_tp": 1,
165
+ "rms_norm_eps": 1e-05,
166
+ "rope_scaling": null,
167
+ "rope_theta": 10000.0,
168
+ "tie_word_embeddings": false,
169
+ "torch_dtype": "float16",
170
+ "transformers_version": "4.36.2",
171
+ "use_cache": true,
172
+ "vocab_size": 32000
173
+ }
174
+
175
+ [INFO|modeling_utils.py:3341] 2024-01-18 19:24:51,444 >> loading weights file Yhyu13/LMCocktail-10.7B-v1/model.safetensors.index.json
176
+ [INFO|modeling_utils.py:1341] 2024-01-18 19:24:51,444 >> Instantiating LlamaForCausalLM model under default dtype torch.float16.
177
+ [INFO|configuration_utils.py:826] 2024-01-18 19:24:51,445 >> Generate config GenerationConfig {
178
+ "bos_token_id": 1,
179
+ "eos_token_id": 2,
180
+ "pad_token_id": 2
181
+ }
182
+
183
+
184
+ Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s]
185
+ Loading checkpoint shards: 20%|██ | 1/5 [00:00<00:00, 6.36it/s]
186
+ Loading checkpoint shards: 40%|████ | 2/5 [00:00<00:00, 6.36it/s]Yhyu13/LMCocktail-10.7B-v1
187
+ Loading checkpoint shards: 60%|██████ | 3/5 [00:00<00:00, 6.36it/s]
188
+ Loading checkpoint shards: 80%|████████ | 4/5 [00:00<00:00, 6.36it/s]Yhyu13/LMCocktail-10.7B-v1
189
+ Loading checkpoint shards: 100%|██████████| 5/5 [00:00<00:00, 6.42it/s]
190
+ Loading checkpoint shards: 100%|██████████| 5/5 [00:00<00:00, 6.39it/s]
191
+ [INFO|modeling_utils.py:4185] 2024-01-18 19:24:52,397 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
192
+
193
+ [INFO|modeling_utils.py:4193] 2024-01-18 19:24:52,397 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at ./models/LMCocktail-10.7B-v1.
194
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
195
+ [INFO|configuration_utils.py:779] 2024-01-18 19:24:52,400 >> loading configuration file ./models/LMCocktail-10.7B-v1/generation_config.json
196
+ [INFO|configuration_utils.py:826] 2024-01-18 19:24:52,400 >> Generate config GenerationConfig {
197
+ "bos_token_id": 1,
198
+ "eos_token_id": 2,
199
+ "pad_token_id": 2,
200
+ "use_cache": false
201
+ }
202
+
203
+ 01/18/2024 19:24:52 - INFO - llmtuner.model.adapter - Fine-tuning method: LoRA
204
+ 01/18/2024 19:24:54 - INFO - llmtuner.model.adapter - Merged 1 adapter(s).
205
+ 01/18/2024 19:24:54 - INFO - llmtuner.model.adapter - Loaded adapter(s): ./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora
206
+ 01/18/2024 19:24:54 - INFO - llmtuner.model.loader - trainable params: 0 || all params: 10731524096 || trainable%: 0.0000
207
+ 01/18/2024 19:24:54 - INFO - llmtuner.model.loader - This IS expected that the trainable params is 0 if you are using model for inference only.
208
+
209
+ Running tokenizer on dataset: 0%| | 0/20 [00:00<?, ? examples/s]Caching processed dataset at /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96/cache-700bf363697824f9.arrow
210
+
211
+ Running tokenizer on dataset: 100%|██████████| 20/20 [00:00<00:00, 529.06 examples/s]
212
+ [INFO|training_args.py:1838] 2024-01-18 19:24:54,939 >> PyTorch: setting up devices
213
+ Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
214
+ [INFO|trainer.py:3166] 2024-01-18 19:24:57,618 >> ***** Running Prediction *****
215
+ [INFO|trainer.py:3168] 2024-01-18 19:24:57,618 >> Num examples = 20
216
+ [INFO|trainer.py:3171] 2024-01-18 19:24:57,618 >> Batch size = 1
217
+ [INFO|configuration_utils.py:826] 2024-01-18 19:24:57,631 >> Generate config GenerationConfig {
218
+ "bos_token_id": 1,
219
+ "eos_token_id": 2,
220
+ "pad_token_id": 2
221
+ }
222
+
223
+ /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/transformers/generation/utils.py:1518: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )
224
+ warnings.warn(
225
+ input_ids:
226
+ [1, 774, 1247, 28747, 13, 27842, 28747, 995, 460, 264, 10865, 13892, 395, 2735, 298, 272, 2296, 5572, 28723, 5938, 706, 513, 3030, 387, 13, 28751, 13, 2287, 345, 861, 1264, 345, 527, 28730, 720, 4078, 28730, 6036, 548, 13, 2287, 345, 6518, 1264, 345, 1458, 272, 8877, 4338, 1444, 989, 1191, 951, 20023, 548, 13, 2287, 345, 11438, 1264, 371, 13, 5390, 345, 1123, 1264, 345, 2814, 548, 13, 5390, 345, 10723, 1264, 371, 13, 17422, 345, 2893, 28730, 16714, 1264, 371, 13, 1417, 28705, 345, 1123, 1264, 345, 1427, 548, 13, 1417, 28705, 345, 6518, 1264, 345, 1014, 15547, 298, 6603, 477, 28739, 13, 17422, 1630, 13, 17422, 345, 3731, 28730, 16714, 1264, 371, 13, 1417, 28705, 345, 1123, 1264, 345, 1427, 548, 13, 1417, 28705, 345, 6518, 1264, 345, 1014, 15547, 298, 6603, 298, 28739, 13, 17422, 443, 13, 5390, 1630, 13, 5390, 345, 10893, 1264, 733, 13, 17422, 345, 2893, 28730, 16714, 548, 13, 17422, 345, 3731, 28730, 16714, 28739, 13, 5390, 4709, 13, 2287, 443, 13, 28752, 13, 13, 6325, 368, 1820, 264, 9314, 354, 528, 477, 1450, 2726, 298, 4222, 28804, 13, 13, 27332, 21631, 28747, 13]
227
+ inputs:
228
+ <s>### User:
229
+ SYSTEM: You are a helpful assistant with access to the following functions. Use them if required -
230
+ {
231
+ "name": "get_exchange_rate",
232
+ "description": "Get the exchange rate between two currencies",
233
+ "parameters": {
234
+ "type": "object",
235
+ "properties": {
236
+ "base_currency": {
237
+ "type": "string",
238
+ "description": "The currency to convert from"
239
+ },
240
+ "target_currency": {
241
+ "type": "string",
242
+ "description": "The currency to convert to"
243
+ }
244
+ },
245
+ "required": [
246
+ "base_currency",
247
+ "target_currency"
248
+ ]
249
+ }
250
+ }
251
+
252
+ Can you book a flight for me from New York to London?
253
+
254
+ ### Assistant:
255
+
256
+
257
+ 0%| | 0/20 [00:00<?, ?it/s]
258
+ 10%|█ | 2/20 [00:01<00:13, 1.31it/s]
259
+ 15%|█▌ | 3/20 [00:04<00:26, 1.56s/it]
260
+ 20%|██ | 4/20 [00:05<00:25, 1.60s/it]
261
+ 25%|██▌ | 5/20 [00:09<00:32, 2.16s/it]
262
+ 30%|███ | 6/20 [00:10<00:26, 1.87s/it]
263
+ 35%|███▌ | 7/20 [00:12<00:24, 1.87s/it]
264
+ 40%|████ | 8/20 [00:13<00:21, 1.79s/it]
265
+ 45%|████▌ | 9/20 [00:15<00:17, 1.62s/it]
266
+ 50%|█████ | 10/20 [00:17<00:18, 1.81s/it]
267
+ 55%|█████▌ | 11/20 [00:18<00:15, 1.75s/it]
268
+ 60%|██████ | 12/20 [00:19<00:12, 1.51s/it]
269
+ 65%|██████▌ | 13/20 [00:22<00:12, 1.79s/it]
270
+ 70%|███████ | 14/20 [00:23<00:08, 1.50s/it]
271
+ 75%|███████▌ | 15/20 [00:26<00:10, 2.07s/it]
272
+ 80%|████████ | 16/20 [00:27<00:06, 1.74s/it]
273
+ 85%|████████▌ | 17/20 [00:29<00:05, 1.79s/it]
274
+ 90%|█████████ | 18/20 [00:31<00:03, 1.99s/it]
275
+ 95%|█████████▌| 19/20 [00:32<00:01, 1.63s/it]
276
+ 100%|██████████| 20/20 [00:34<00:00, 1.72s/it]Building prefix dict from the default dictionary ...
277
+ Loading model from cache /tmp/jieba.cache
278
+ Loading model cost 0.675 seconds.
279
+ Prefix dict has been built successfully.
280
+
281
+ 100%|██████████| 20/20 [00:35<00:00, 1.77s/it]
282
+ ***** predict metrics *****
283
+ predict_bleu-4 = 84.0251
284
+ predict_rouge-1 = 88.6553
285
+ predict_rouge-2 = 80.2374
286
+ predict_rouge-l = 86.4698
287
+ predict_runtime = 0:00:37.47
288
+ predict_samples_per_second = 0.534
289
+ predict_steps_per_second = 0.534
290
+ 01/18/2024 19:25:35 - INFO - llmtuner.train.sft.trainer - Saving prediction results to ./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20/generated_predictions.jsonl
Predict_20/predict_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_bleu-4": 84.02507,
3
+ "predict_rouge-1": 88.655265,
4
+ "predict_rouge-2": 80.23742000000001,
5
+ "predict_rouge-l": 86.469845,
6
+ "predict_runtime": 37.4743,
7
+ "predict_samples_per_second": 0.534,
8
+ "predict_steps_per_second": 0.534
9
+ }
README.md CHANGED
@@ -1,3 +1,68 @@
1
  ---
2
  license: llama2
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - llama-factory
6
+ - lora
7
+ - generated_from_trainer
8
+ base_model: Yhyu13/LMCocktail-10.7B-v1
9
+ model-index:
10
+ - name: LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora
11
+ results: []
12
  ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora
18
+
19
+ This model is a fine-tuned version of [Yhyu13/LMCocktail-10.7B-v1](https://huggingface.co/Yhyu13/LMCocktail-10.7B-v1) on the https://huggingface.co/datasets/Yhyu13/glaive-function-calling-v2-llama-factory-convert dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2787
22
+
23
+ Training script is availbale at ./scripts/
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 1
44
+ - eval_batch_size: 1
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 2
48
+ - gradient_accumulation_steps: 4
49
+ - total_train_batch_size: 8
50
+ - total_eval_batch_size: 2
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: cosine
53
+ - num_epochs: 1.0
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss |
58
+ |:-------------:|:-----:|:----:|:---------------:|
59
+ | 0.2696 | 1.0 | 747 | 0.2787 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - PEFT 0.7.1
65
+ - Transformers 4.36.2
66
+ - Pytorch 2.1.2+cu121
67
+ - Datasets 2.16.1
68
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Yhyu13/LMCocktail-10.7B-v1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "v_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6cac1463452a8fc823b715bbd6df7f3a3fad2a24ea5c3ed495e58545c07ea9b
3
+ size 20472752
all_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.27866294980049133,
4
+ "eval_runtime": 101.2511,
5
+ "eval_samples_per_second": 6.558,
6
+ "eval_steps_per_second": 3.279,
7
+ "train_loss": 0.3299662241814446,
8
+ "train_runtime": 2859.8545,
9
+ "train_samples_per_second": 2.089,
10
+ "train_steps_per_second": 0.261
11
+ }
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_loss": 0.27866294980049133,
4
+ "eval_runtime": 101.2511,
5
+ "eval_samples_per_second": 6.558,
6
+ "eval_steps_per_second": 3.279
7
+ }
scripts/local_sft_fn_lmcocktail.sh ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ eval "$(conda shell.bash hook)"
4
+ conda activate llama_factory
5
+
6
+ MODEL_NAME=LMCocktail-10.7B-v1
7
+ STAGE=sft
8
+ EPOCH=1 #3.0
9
+ DATA=glaive-function-calling-v2
10
+
11
+ FT_TYPE=lora
12
+ LoRA_TARGET=q_proj,v_proj
13
+ TEMPLATE=solar
14
+ PREDICTION_SAMPLES=20
15
+
16
+ MODEL_PATH=./models/$MODEL_NAME
17
+ if [ ! -d $MODEL_PATH ]; then
18
+ echo "Model not found: $MODEL_PATH"
19
+ return 1
20
+ fi
21
+
22
+ SAVE_PATH=./models/$STAGE/$MODEL_NAME-$STAGE-$DATA-ep$EPOCH-$FT_TYPE
23
+ if [ ! -d $SAVE_PATH ]; then
24
+ mkdir -p $SAVE_PATH
25
+ fi
26
+
27
+ DO_TRAIN=false
28
+ DO_PREDICT=false
29
+ DO_EXPORT=false
30
+
31
+ for arg in "$@"
32
+ do
33
+ if [[ "$arg" == "--train" ]]; then
34
+ echo "The '--train' argument is present in an argument: $arg"
35
+ DO_TRAIN=true
36
+ fi
37
+ if [[ "$arg" == "--pred" ]]; then
38
+ echo "The '--pred' argument is present in an argument: $arg"
39
+ DO_PREDICT=true
40
+ fi
41
+ if [[ "$arg" == "--exp" ]]; then
42
+ echo "The '--exp' argument is present in an argument: $arg"
43
+ DO_EXPORT=true
44
+ fi
45
+ done
46
+
47
+ if [ $DO_TRAIN == true ]; then
48
+ accelerate launch src/train_bash.py \
49
+ --seed 42 \
50
+ --stage $STAGE \
51
+ --model_name_or_path $MODEL_PATH \
52
+ --dataset $DATA \
53
+ --val_size .1 \
54
+ --template $TEMPLATE \
55
+ --finetuning_type $FT_TYPE \
56
+ --do_train \
57
+ --lora_target $LoRA_TARGET \
58
+ --output_dir $SAVE_PATH \
59
+ --overwrite_output_dir \
60
+ --overwrite_cache \
61
+ --per_device_train_batch_size 1 \
62
+ --gradient_accumulation_steps 4 \
63
+ --lr_scheduler_type cosine \
64
+ --logging_steps 500 \
65
+ --save_steps 500 \
66
+ --learning_rate 5e-5 \
67
+ --num_train_epochs $EPOCH \
68
+ --do_eval \
69
+ --evaluation_strategy steps \
70
+ --per_device_eval_batch_size 1 \
71
+ --prediction_loss_only \
72
+ --plot_loss \
73
+ --quantization_bit 4 \
74
+ --report_to tensorboard \
75
+ |& tee $SAVE_PATH/train_eval_log.txt
76
+ fi
77
+
78
+ if [ $DO_PREDICT == true ]; then
79
+ SAVE_PATH_PREDICT=$SAVE_PATH/Predict_$PREDICTION_SAMPLES
80
+ if [ ! -d $SAVE_PATH_PREDICT ]; then
81
+ mkdir -p $SAVE_PATH_PREDICT
82
+ fi
83
+ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
84
+ --stage $STAGE \
85
+ --model_name_or_path $MODEL_PATH \
86
+ --do_predict \
87
+ --max_samples $PREDICTION_SAMPLES \
88
+ --predict_with_generate \
89
+ --dataset $DATA \
90
+ --template $TEMPLATE \
91
+ --finetuning_type $FT_TYPE \
92
+ --adapter_name_or_path $SAVE_PATH \
93
+ --output_dir $SAVE_PATH_PREDICT \
94
+ --per_device_eval_batch_size 1 \
95
+ |& tee $SAVE_PATH_PREDICT/predict_log.txt
96
+ fi
97
+
98
+ if [ $DO_EXPORT == true ]; then
99
+ EXPORT_PATH=./models/export/$MODEL_NAME-$STAGE-$DATA-ep$EPOCH
100
+ if [ ! -d $EXPORT_PATH ]; then
101
+ mkdir -p $EXPORT_PATH
102
+ fi
103
+ CUDA_VISIBLE_DEVICES=0 python src/export_model.py \
104
+ --model_name_or_path $MODEL_PATH \
105
+ --adapter_name_or_path $SAVE_PATH \
106
+ --template $TEMPLATE \
107
+ --finetuning_type $FT_TYPE \
108
+ --export_dir $EXPORT_PATH \
109
+ --export_size 5 \
110
+ |& tee $EXPORT_PATH/export_log.txt
111
+ fi
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{% if message['content']%}{{'### System:\n' + message['content']+'\n\n'}}{% endif %}{% elif message['role'] == 'user' %}{{'### User:\n' + message['content']+'\n\n'}}{% elif message['role'] == 'assistant' %}{{'### Assistant:\n' + message['content']}}{% endif %}{% if loop.last and add_generation_prompt %}{{ '### Assistant:\n' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": true
45
+ }
train_eval_log.txt ADDED
The diff for this file is too large to render. See raw diff
 
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.3299662241814446,
4
+ "train_runtime": 2859.8545,
5
+ "train_samples_per_second": 2.089,
6
+ "train_steps_per_second": 0.261
7
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 10, "total_steps": 747, "loss": 1.6077, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.997789428625975e-05, "epoch": 0.01, "percentage": 1.34, "elapsed_time": "0:00:36", "remaining_time": "0:44:29"}
2
+ {"current_steps": 20, "total_steps": 747, "loss": 0.9415, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.99116162380454e-05, "epoch": 0.03, "percentage": 2.68, "elapsed_time": "0:01:13", "remaining_time": "0:44:28"}
3
+ {"current_steps": 30, "total_steps": 747, "loss": 0.6271, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.980128306524183e-05, "epoch": 0.04, "percentage": 4.02, "elapsed_time": "0:01:48", "remaining_time": "0:43:13"}
4
+ {"current_steps": 40, "total_steps": 747, "loss": 0.5335, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.964708988733178e-05, "epoch": 0.05, "percentage": 5.35, "elapsed_time": "0:02:27", "remaining_time": "0:43:20"}
5
+ {"current_steps": 50, "total_steps": 747, "loss": 0.3693, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.944930938833535e-05, "epoch": 0.07, "percentage": 6.69, "elapsed_time": "0:03:01", "remaining_time": "0:42:14"}
6
+ {"current_steps": 60, "total_steps": 747, "loss": 0.47, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9208291334580104e-05, "epoch": 0.08, "percentage": 8.03, "elapsed_time": "0:03:39", "remaining_time": "0:41:57"}
7
+ {"current_steps": 70, "total_steps": 747, "loss": 0.4268, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.892446195615423e-05, "epoch": 0.09, "percentage": 9.37, "elapsed_time": "0:04:16", "remaining_time": "0:41:19"}
8
+ {"current_steps": 80, "total_steps": 747, "loss": 0.3653, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.859832319313697e-05, "epoch": 0.11, "percentage": 10.71, "elapsed_time": "0:04:53", "remaining_time": "0:40:49"}
9
+ {"current_steps": 90, "total_steps": 747, "loss": 0.3466, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.8230451807939135e-05, "epoch": 0.12, "percentage": 12.05, "elapsed_time": "0:05:31", "remaining_time": "0:40:21"}
10
+ {"current_steps": 100, "total_steps": 747, "loss": 0.3241, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.782149836532345e-05, "epoch": 0.13, "percentage": 13.39, "elapsed_time": "0:06:07", "remaining_time": "0:39:39"}
11
+ {"current_steps": 110, "total_steps": 747, "loss": 0.3763, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.737218608190878e-05, "epoch": 0.15, "percentage": 14.73, "elapsed_time": "0:06:47", "remaining_time": "0:39:21"}
12
+ {"current_steps": 120, "total_steps": 747, "loss": 0.3333, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.6883309547192476e-05, "epoch": 0.16, "percentage": 16.06, "elapsed_time": "0:07:25", "remaining_time": "0:38:48"}
13
+ {"current_steps": 130, "total_steps": 747, "loss": 0.3106, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.635573331835302e-05, "epoch": 0.17, "percentage": 17.4, "elapsed_time": "0:08:01", "remaining_time": "0:38:05"}
14
+ {"current_steps": 140, "total_steps": 747, "loss": 0.3241, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.5790390391317675e-05, "epoch": 0.19, "percentage": 18.74, "elapsed_time": "0:08:39", "remaining_time": "0:37:33"}
15
+ {"current_steps": 150, "total_steps": 747, "loss": 0.2781, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.518828055079925e-05, "epoch": 0.2, "percentage": 20.08, "elapsed_time": "0:09:15", "remaining_time": "0:36:50"}
16
+ {"current_steps": 160, "total_steps": 747, "loss": 0.3, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4550468602219716e-05, "epoch": 0.21, "percentage": 21.42, "elapsed_time": "0:09:54", "remaining_time": "0:36:19"}
17
+ {"current_steps": 170, "total_steps": 747, "loss": 0.3229, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.387808248864751e-05, "epoch": 0.23, "percentage": 22.76, "elapsed_time": "0:10:29", "remaining_time": "0:35:37"}
18
+ {"current_steps": 180, "total_steps": 747, "loss": 0.3347, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.3172311296078595e-05, "epoch": 0.24, "percentage": 24.1, "elapsed_time": "0:11:05", "remaining_time": "0:34:56"}
19
+ {"current_steps": 190, "total_steps": 747, "loss": 0.2897, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.2434403150588895e-05, "epoch": 0.25, "percentage": 25.44, "elapsed_time": "0:11:42", "remaining_time": "0:34:19"}
20
+ {"current_steps": 200, "total_steps": 747, "loss": 0.2951, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.166566301107687e-05, "epoch": 0.27, "percentage": 26.77, "elapsed_time": "0:12:18", "remaining_time": "0:33:40"}
21
+ {"current_steps": 210, "total_steps": 747, "loss": 0.3081, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.08674503614997e-05, "epoch": 0.28, "percentage": 28.11, "elapsed_time": "0:12:56", "remaining_time": "0:33:04"}
22
+ {"current_steps": 220, "total_steps": 747, "loss": 0.2889, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.004117680668422e-05, "epoch": 0.29, "percentage": 29.45, "elapsed_time": "0:13:29", "remaining_time": "0:32:18"}
23
+ {"current_steps": 230, "total_steps": 747, "loss": 0.3207, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.918830357596434e-05, "epoch": 0.31, "percentage": 30.79, "elapsed_time": "0:14:05", "remaining_time": "0:31:40"}
24
+ {"current_steps": 240, "total_steps": 747, "loss": 0.3238, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8310338939059644e-05, "epoch": 0.32, "percentage": 32.13, "elapsed_time": "0:14:41", "remaining_time": "0:31:02"}
25
+ {"current_steps": 250, "total_steps": 747, "loss": 0.3146, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.740883553876515e-05, "epoch": 0.33, "percentage": 33.47, "elapsed_time": "0:15:19", "remaining_time": "0:30:27"}
26
+ {"current_steps": 260, "total_steps": 747, "loss": 0.2973, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.6485387645169064e-05, "epoch": 0.35, "percentage": 34.81, "elapsed_time": "0:15:53", "remaining_time": "0:29:46"}
27
+ {"current_steps": 270, "total_steps": 747, "loss": 0.2631, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.55416283362546e-05, "epoch": 0.36, "percentage": 36.14, "elapsed_time": "0:16:31", "remaining_time": "0:29:11"}
28
+ {"current_steps": 280, "total_steps": 747, "loss": 0.3323, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.457922660987155e-05, "epoch": 0.37, "percentage": 37.48, "elapsed_time": "0:17:10", "remaining_time": "0:28:38"}
29
+ {"current_steps": 290, "total_steps": 747, "loss": 0.2631, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.3599884432185225e-05, "epoch": 0.39, "percentage": 38.82, "elapsed_time": "0:17:47", "remaining_time": "0:28:02"}
30
+ {"current_steps": 300, "total_steps": 747, "loss": 0.3066, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.260533372782234e-05, "epoch": 0.4, "percentage": 40.16, "elapsed_time": "0:18:22", "remaining_time": "0:27:22"}
31
+ {"current_steps": 310, "total_steps": 747, "loss": 0.3131, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1597333317036545e-05, "epoch": 0.41, "percentage": 41.5, "elapsed_time": "0:18:58", "remaining_time": "0:26:44"}
32
+ {"current_steps": 320, "total_steps": 747, "loss": 0.3101, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.057766580531031e-05, "epoch": 0.43, "percentage": 42.84, "elapsed_time": "0:19:36", "remaining_time": "0:26:09"}
33
+ {"current_steps": 330, "total_steps": 747, "loss": 0.3022, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9548134430893604e-05, "epoch": 0.44, "percentage": 44.18, "elapsed_time": "0:20:14", "remaining_time": "0:25:34"}
34
+ {"current_steps": 340, "total_steps": 747, "loss": 0.2496, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8510559875854377e-05, "epoch": 0.46, "percentage": 45.52, "elapsed_time": "0:20:49", "remaining_time": "0:24:56"}
35
+ {"current_steps": 350, "total_steps": 747, "loss": 0.3218, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.7466777046280457e-05, "epoch": 0.47, "percentage": 46.85, "elapsed_time": "0:21:25", "remaining_time": "0:24:17"}
36
+ {"current_steps": 360, "total_steps": 747, "loss": 0.3064, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6418631827326857e-05, "epoch": 0.48, "percentage": 48.19, "elapsed_time": "0:21:59", "remaining_time": "0:23:38"}
37
+ {"current_steps": 370, "total_steps": 747, "loss": 0.2937, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.5367977818847034e-05, "epoch": 0.5, "percentage": 49.53, "elapsed_time": "0:22:38", "remaining_time": "0:23:04"}
38
+ {"current_steps": 380, "total_steps": 747, "loss": 0.2708, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.431667305738112e-05, "epoch": 0.51, "percentage": 50.87, "elapsed_time": "0:23:19", "remaining_time": "0:22:32"}
39
+ {"current_steps": 390, "total_steps": 747, "loss": 0.2838, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.3266576730297956e-05, "epoch": 0.52, "percentage": 52.21, "elapsed_time": "0:23:56", "remaining_time": "0:21:54"}
40
+ {"current_steps": 400, "total_steps": 747, "loss": 0.2987, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.221954588790206e-05, "epoch": 0.54, "percentage": 53.55, "elapsed_time": "0:24:34", "remaining_time": "0:21:19"}
41
+ {"current_steps": 410, "total_steps": 747, "loss": 0.3069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.1177432159319754e-05, "epoch": 0.55, "percentage": 54.89, "elapsed_time": "0:25:11", "remaining_time": "0:20:42"}
42
+ {"current_steps": 420, "total_steps": 747, "loss": 0.2709, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.014207847797256e-05, "epoch": 0.56, "percentage": 56.22, "elapsed_time": "0:25:47", "remaining_time": "0:20:05"}
43
+ {"current_steps": 430, "total_steps": 747, "loss": 0.3159, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9115315822428437e-05, "epoch": 0.58, "percentage": 57.56, "elapsed_time": "0:26:26", "remaining_time": "0:19:29"}
44
+ {"current_steps": 440, "total_steps": 747, "loss": 0.2997, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.809895997839482e-05, "epoch": 0.59, "percentage": 58.9, "elapsed_time": "0:27:01", "remaining_time": "0:18:51"}
45
+ {"current_steps": 450, "total_steps": 747, "loss": 0.2347, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.70948083275794e-05, "epoch": 0.6, "percentage": 60.24, "elapsed_time": "0:27:37", "remaining_time": "0:18:14"}
46
+ {"current_steps": 460, "total_steps": 747, "loss": 0.2634, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6104636669097776e-05, "epoch": 0.62, "percentage": 61.58, "elapsed_time": "0:28:12", "remaining_time": "0:17:35"}
47
+ {"current_steps": 470, "total_steps": 747, "loss": 0.2438, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.513019607904882e-05, "epoch": 0.63, "percentage": 62.92, "elapsed_time": "0:28:49", "remaining_time": "0:16:59"}
48
+ {"current_steps": 480, "total_steps": 747, "loss": 0.2289, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4173209813811788e-05, "epoch": 0.64, "percentage": 64.26, "elapsed_time": "0:29:26", "remaining_time": "0:16:22"}
49
+ {"current_steps": 490, "total_steps": 747, "loss": 0.2609, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3235370262541272e-05, "epoch": 0.66, "percentage": 65.6, "elapsed_time": "0:30:05", "remaining_time": "0:15:47"}
50
+ {"current_steps": 500, "total_steps": 747, "loss": 0.2724, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2318335954249669e-05, "epoch": 0.67, "percentage": 66.93, "elapsed_time": "0:30:43", "remaining_time": "0:15:10"}
51
+ {"current_steps": 510, "total_steps": 747, "loss": 0.272, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1423728624769695e-05, "epoch": 0.68, "percentage": 68.27, "elapsed_time": "0:31:18", "remaining_time": "0:14:33"}
52
+ {"current_steps": 520, "total_steps": 747, "loss": 0.303, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0553130348784182e-05, "epoch": 0.7, "percentage": 69.61, "elapsed_time": "0:31:57", "remaining_time": "0:13:56"}
53
+ {"current_steps": 530, "total_steps": 747, "loss": 0.2766, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.708080741994868e-06, "epoch": 0.71, "percentage": 70.95, "elapsed_time": "0:32:35", "remaining_time": "0:13:20"}
54
+ {"current_steps": 540, "total_steps": 747, "loss": 0.2333, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.890074238378074e-06, "epoch": 0.72, "percentage": 72.29, "elapsed_time": "0:33:13", "remaining_time": "0:12:44"}
55
+ {"current_steps": 550, "total_steps": 747, "loss": 0.2326, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.100557447342327e-06, "epoch": 0.74, "percentage": 73.63, "elapsed_time": "0:33:51", "remaining_time": "0:12:07"}
56
+ {"current_steps": 560, "total_steps": 747, "loss": 0.2274, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.340926595461687e-06, "epoch": 0.75, "percentage": 74.97, "elapsed_time": "0:34:28", "remaining_time": "0:11:30"}
57
+ {"current_steps": 570, "total_steps": 747, "loss": 0.3255, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.612525057308949e-06, "epoch": 0.76, "percentage": 76.31, "elapsed_time": "0:35:05", "remaining_time": "0:10:53"}
58
+ {"current_steps": 580, "total_steps": 747, "loss": 0.2631, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.9166409797553415e-06, "epoch": 0.78, "percentage": 77.64, "elapsed_time": "0:35:41", "remaining_time": "0:10:16"}
59
+ {"current_steps": 590, "total_steps": 747, "loss": 0.2938, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.254505003938043e-06, "epoch": 0.79, "percentage": 78.98, "elapsed_time": "0:36:17", "remaining_time": "0:09:39"}
60
+ {"current_steps": 600, "total_steps": 747, "loss": 0.2807, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.627288088924156e-06, "epoch": 0.8, "percentage": 80.32, "elapsed_time": "0:36:53", "remaining_time": "0:09:02"}
61
+ {"current_steps": 610, "total_steps": 747, "loss": 0.2909, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.036099440919763e-06, "epoch": 0.82, "percentage": 81.66, "elapsed_time": "0:37:34", "remaining_time": "0:08:26"}
62
+ {"current_steps": 620, "total_steps": 747, "loss": 0.2997, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.481984551686429e-06, "epoch": 0.83, "percentage": 83.0, "elapsed_time": "0:38:11", "remaining_time": "0:07:49"}
63
+ {"current_steps": 630, "total_steps": 747, "loss": 0.2424, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.9659233496337786e-06, "epoch": 0.84, "percentage": 84.34, "elapsed_time": "0:38:48", "remaining_time": "0:07:12"}
64
+ {"current_steps": 640, "total_steps": 747, "loss": 0.2862, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4888284668582285e-06, "epoch": 0.86, "percentage": 85.68, "elapsed_time": "0:39:27", "remaining_time": "0:06:35"}
65
+ {"current_steps": 650, "total_steps": 747, "loss": 0.3124, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.051543625192226e-06, "epoch": 0.87, "percentage": 87.01, "elapsed_time": "0:40:04", "remaining_time": "0:05:58"}
66
+ {"current_steps": 660, "total_steps": 747, "loss": 0.2644, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6548421441183875e-06, "epoch": 0.88, "percentage": 88.35, "elapsed_time": "0:40:43", "remaining_time": "0:05:22"}
67
+ {"current_steps": 670, "total_steps": 747, "loss": 0.2622, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2994255731871963e-06, "epoch": 0.9, "percentage": 89.69, "elapsed_time": "0:41:18", "remaining_time": "0:04:44"}
68
+ {"current_steps": 680, "total_steps": 747, "loss": 0.2234, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.85922451356694e-07, "epoch": 0.91, "percentage": 91.03, "elapsed_time": "0:41:52", "remaining_time": "0:04:07"}
69
+ {"current_steps": 690, "total_steps": 747, "loss": 0.334, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.148871954483105e-07, "epoch": 0.92, "percentage": 92.37, "elapsed_time": "0:42:29", "remaining_time": "0:03:30"}
70
+ {"current_steps": 700, "total_steps": 747, "loss": 0.2915, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.867991196844918e-07, "epoch": 0.94, "percentage": 93.71, "elapsed_time": "0:43:07", "remaining_time": "0:02:53"}
71
+ {"current_steps": 710, "total_steps": 747, "loss": 0.2802, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.020615880420713e-07, "epoch": 0.95, "percentage": 95.05, "elapsed_time": "0:43:42", "remaining_time": "0:02:16"}
72
+ {"current_steps": 720, "total_steps": 747, "loss": 0.2975, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.6100130092037703e-07, "epoch": 0.96, "percentage": 96.39, "elapsed_time": "0:44:17", "remaining_time": "0:01:39"}
73
+ {"current_steps": 730, "total_steps": 747, "loss": 0.2531, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.386771738558506e-08, "epoch": 0.98, "percentage": 97.72, "elapsed_time": "0:44:53", "remaining_time": "0:01:02"}
74
+ {"current_steps": 740, "total_steps": 747, "loss": 0.2696, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0832614013073228e-08, "epoch": 0.99, "percentage": 99.06, "elapsed_time": "0:45:30", "remaining_time": "0:00:25"}
75
+ {"current_steps": 747, "total_steps": 747, "loss": null, "eval_loss": 0.27866294980049133, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:45:56", "remaining_time": "0:00:00"}
76
+ {"current_steps": 747, "total_steps": 747, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:45:56", "remaining_time": "0:00:00"}
77
+ {"current_steps": 332, "total_steps": 332, "loss": null, "eval_loss": 0.27866294980049133, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "0:49:22", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 747,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.997789428625975e-05,
14
+ "loss": 1.6077,
15
+ "step": 10
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 4.99116162380454e-05,
20
+ "loss": 0.9415,
21
+ "step": 20
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 4.980128306524183e-05,
26
+ "loss": 0.6271,
27
+ "step": 30
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4.964708988733178e-05,
32
+ "loss": 0.5335,
33
+ "step": 40
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 4.944930938833535e-05,
38
+ "loss": 0.3693,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 4.9208291334580104e-05,
44
+ "loss": 0.47,
45
+ "step": 60
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 4.892446195615423e-05,
50
+ "loss": 0.4268,
51
+ "step": 70
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 4.859832319313697e-05,
56
+ "loss": 0.3653,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 4.8230451807939135e-05,
62
+ "loss": 0.3466,
63
+ "step": 90
64
+ },
65
+ {
66
+ "epoch": 0.13,
67
+ "learning_rate": 4.782149836532345e-05,
68
+ "loss": 0.3241,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 4.737218608190878e-05,
74
+ "loss": 0.3763,
75
+ "step": 110
76
+ },
77
+ {
78
+ "epoch": 0.16,
79
+ "learning_rate": 4.6883309547192476e-05,
80
+ "loss": 0.3333,
81
+ "step": 120
82
+ },
83
+ {
84
+ "epoch": 0.17,
85
+ "learning_rate": 4.635573331835302e-05,
86
+ "loss": 0.3106,
87
+ "step": 130
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 4.5790390391317675e-05,
92
+ "loss": 0.3241,
93
+ "step": 140
94
+ },
95
+ {
96
+ "epoch": 0.2,
97
+ "learning_rate": 4.518828055079925e-05,
98
+ "loss": 0.2781,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.21,
103
+ "learning_rate": 4.4550468602219716e-05,
104
+ "loss": 0.3,
105
+ "step": 160
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 4.387808248864751e-05,
110
+ "loss": 0.3229,
111
+ "step": 170
112
+ },
113
+ {
114
+ "epoch": 0.24,
115
+ "learning_rate": 4.3172311296078595e-05,
116
+ "loss": 0.3347,
117
+ "step": 180
118
+ },
119
+ {
120
+ "epoch": 0.25,
121
+ "learning_rate": 4.2434403150588895e-05,
122
+ "loss": 0.2897,
123
+ "step": 190
124
+ },
125
+ {
126
+ "epoch": 0.27,
127
+ "learning_rate": 4.166566301107687e-05,
128
+ "loss": 0.2951,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "learning_rate": 4.08674503614997e-05,
134
+ "loss": 0.3081,
135
+ "step": 210
136
+ },
137
+ {
138
+ "epoch": 0.29,
139
+ "learning_rate": 4.004117680668422e-05,
140
+ "loss": 0.2889,
141
+ "step": 220
142
+ },
143
+ {
144
+ "epoch": 0.31,
145
+ "learning_rate": 3.918830357596434e-05,
146
+ "loss": 0.3207,
147
+ "step": 230
148
+ },
149
+ {
150
+ "epoch": 0.32,
151
+ "learning_rate": 3.8310338939059644e-05,
152
+ "loss": 0.3238,
153
+ "step": 240
154
+ },
155
+ {
156
+ "epoch": 0.33,
157
+ "learning_rate": 3.740883553876515e-05,
158
+ "loss": 0.3146,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "learning_rate": 3.6485387645169064e-05,
164
+ "loss": 0.2973,
165
+ "step": 260
166
+ },
167
+ {
168
+ "epoch": 0.36,
169
+ "learning_rate": 3.55416283362546e-05,
170
+ "loss": 0.2631,
171
+ "step": 270
172
+ },
173
+ {
174
+ "epoch": 0.37,
175
+ "learning_rate": 3.457922660987155e-05,
176
+ "loss": 0.3323,
177
+ "step": 280
178
+ },
179
+ {
180
+ "epoch": 0.39,
181
+ "learning_rate": 3.3599884432185225e-05,
182
+ "loss": 0.2631,
183
+ "step": 290
184
+ },
185
+ {
186
+ "epoch": 0.4,
187
+ "learning_rate": 3.260533372782234e-05,
188
+ "loss": 0.3066,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.41,
193
+ "learning_rate": 3.1597333317036545e-05,
194
+ "loss": 0.3131,
195
+ "step": 310
196
+ },
197
+ {
198
+ "epoch": 0.43,
199
+ "learning_rate": 3.057766580531031e-05,
200
+ "loss": 0.3101,
201
+ "step": 320
202
+ },
203
+ {
204
+ "epoch": 0.44,
205
+ "learning_rate": 2.9548134430893604e-05,
206
+ "loss": 0.3022,
207
+ "step": 330
208
+ },
209
+ {
210
+ "epoch": 0.46,
211
+ "learning_rate": 2.8510559875854377e-05,
212
+ "loss": 0.2496,
213
+ "step": 340
214
+ },
215
+ {
216
+ "epoch": 0.47,
217
+ "learning_rate": 2.7466777046280457e-05,
218
+ "loss": 0.3218,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "learning_rate": 2.6418631827326857e-05,
224
+ "loss": 0.3064,
225
+ "step": 360
226
+ },
227
+ {
228
+ "epoch": 0.5,
229
+ "learning_rate": 2.5367977818847034e-05,
230
+ "loss": 0.2937,
231
+ "step": 370
232
+ },
233
+ {
234
+ "epoch": 0.51,
235
+ "learning_rate": 2.431667305738112e-05,
236
+ "loss": 0.2708,
237
+ "step": 380
238
+ },
239
+ {
240
+ "epoch": 0.52,
241
+ "learning_rate": 2.3266576730297956e-05,
242
+ "loss": 0.2838,
243
+ "step": 390
244
+ },
245
+ {
246
+ "epoch": 0.54,
247
+ "learning_rate": 2.221954588790206e-05,
248
+ "loss": 0.2987,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.55,
253
+ "learning_rate": 2.1177432159319754e-05,
254
+ "loss": 0.3069,
255
+ "step": 410
256
+ },
257
+ {
258
+ "epoch": 0.56,
259
+ "learning_rate": 2.014207847797256e-05,
260
+ "loss": 0.2709,
261
+ "step": 420
262
+ },
263
+ {
264
+ "epoch": 0.58,
265
+ "learning_rate": 1.9115315822428437e-05,
266
+ "loss": 0.3159,
267
+ "step": 430
268
+ },
269
+ {
270
+ "epoch": 0.59,
271
+ "learning_rate": 1.809895997839482e-05,
272
+ "loss": 0.2997,
273
+ "step": 440
274
+ },
275
+ {
276
+ "epoch": 0.6,
277
+ "learning_rate": 1.70948083275794e-05,
278
+ "loss": 0.2347,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.62,
283
+ "learning_rate": 1.6104636669097776e-05,
284
+ "loss": 0.2634,
285
+ "step": 460
286
+ },
287
+ {
288
+ "epoch": 0.63,
289
+ "learning_rate": 1.513019607904882e-05,
290
+ "loss": 0.2438,
291
+ "step": 470
292
+ },
293
+ {
294
+ "epoch": 0.64,
295
+ "learning_rate": 1.4173209813811788e-05,
296
+ "loss": 0.2289,
297
+ "step": 480
298
+ },
299
+ {
300
+ "epoch": 0.66,
301
+ "learning_rate": 1.3235370262541272e-05,
302
+ "loss": 0.2609,
303
+ "step": 490
304
+ },
305
+ {
306
+ "epoch": 0.67,
307
+ "learning_rate": 1.2318335954249669e-05,
308
+ "loss": 0.2724,
309
+ "step": 500
310
+ },
311
+ {
312
+ "epoch": 0.68,
313
+ "learning_rate": 1.1423728624769695e-05,
314
+ "loss": 0.272,
315
+ "step": 510
316
+ },
317
+ {
318
+ "epoch": 0.7,
319
+ "learning_rate": 1.0553130348784182e-05,
320
+ "loss": 0.303,
321
+ "step": 520
322
+ },
323
+ {
324
+ "epoch": 0.71,
325
+ "learning_rate": 9.708080741994868e-06,
326
+ "loss": 0.2766,
327
+ "step": 530
328
+ },
329
+ {
330
+ "epoch": 0.72,
331
+ "learning_rate": 8.890074238378074e-06,
332
+ "loss": 0.2333,
333
+ "step": 540
334
+ },
335
+ {
336
+ "epoch": 0.74,
337
+ "learning_rate": 8.100557447342327e-06,
338
+ "loss": 0.2326,
339
+ "step": 550
340
+ },
341
+ {
342
+ "epoch": 0.75,
343
+ "learning_rate": 7.340926595461687e-06,
344
+ "loss": 0.2274,
345
+ "step": 560
346
+ },
347
+ {
348
+ "epoch": 0.76,
349
+ "learning_rate": 6.612525057308949e-06,
350
+ "loss": 0.3255,
351
+ "step": 570
352
+ },
353
+ {
354
+ "epoch": 0.78,
355
+ "learning_rate": 5.9166409797553415e-06,
356
+ "loss": 0.2631,
357
+ "step": 580
358
+ },
359
+ {
360
+ "epoch": 0.79,
361
+ "learning_rate": 5.254505003938043e-06,
362
+ "loss": 0.2938,
363
+ "step": 590
364
+ },
365
+ {
366
+ "epoch": 0.8,
367
+ "learning_rate": 4.627288088924156e-06,
368
+ "loss": 0.2807,
369
+ "step": 600
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "learning_rate": 4.036099440919763e-06,
374
+ "loss": 0.2909,
375
+ "step": 610
376
+ },
377
+ {
378
+ "epoch": 0.83,
379
+ "learning_rate": 3.481984551686429e-06,
380
+ "loss": 0.2997,
381
+ "step": 620
382
+ },
383
+ {
384
+ "epoch": 0.84,
385
+ "learning_rate": 2.9659233496337786e-06,
386
+ "loss": 0.2424,
387
+ "step": 630
388
+ },
389
+ {
390
+ "epoch": 0.86,
391
+ "learning_rate": 2.4888284668582285e-06,
392
+ "loss": 0.2862,
393
+ "step": 640
394
+ },
395
+ {
396
+ "epoch": 0.87,
397
+ "learning_rate": 2.051543625192226e-06,
398
+ "loss": 0.3124,
399
+ "step": 650
400
+ },
401
+ {
402
+ "epoch": 0.88,
403
+ "learning_rate": 1.6548421441183875e-06,
404
+ "loss": 0.2644,
405
+ "step": 660
406
+ },
407
+ {
408
+ "epoch": 0.9,
409
+ "learning_rate": 1.2994255731871963e-06,
410
+ "loss": 0.2622,
411
+ "step": 670
412
+ },
413
+ {
414
+ "epoch": 0.91,
415
+ "learning_rate": 9.85922451356694e-07,
416
+ "loss": 0.2234,
417
+ "step": 680
418
+ },
419
+ {
420
+ "epoch": 0.92,
421
+ "learning_rate": 7.148871954483105e-07,
422
+ "loss": 0.334,
423
+ "step": 690
424
+ },
425
+ {
426
+ "epoch": 0.94,
427
+ "learning_rate": 4.867991196844918e-07,
428
+ "loss": 0.2915,
429
+ "step": 700
430
+ },
431
+ {
432
+ "epoch": 0.95,
433
+ "learning_rate": 3.020615880420713e-07,
434
+ "loss": 0.2802,
435
+ "step": 710
436
+ },
437
+ {
438
+ "epoch": 0.96,
439
+ "learning_rate": 1.6100130092037703e-07,
440
+ "loss": 0.2975,
441
+ "step": 720
442
+ },
443
+ {
444
+ "epoch": 0.98,
445
+ "learning_rate": 6.386771738558506e-08,
446
+ "loss": 0.2531,
447
+ "step": 730
448
+ },
449
+ {
450
+ "epoch": 0.99,
451
+ "learning_rate": 1.0832614013073228e-08,
452
+ "loss": 0.2696,
453
+ "step": 740
454
+ },
455
+ {
456
+ "epoch": 1.0,
457
+ "eval_loss": 0.27866294980049133,
458
+ "eval_runtime": 101.2195,
459
+ "eval_samples_per_second": 6.56,
460
+ "eval_steps_per_second": 3.28,
461
+ "step": 747
462
+ },
463
+ {
464
+ "epoch": 1.0,
465
+ "step": 747,
466
+ "total_flos": 1.7883373351469056e+17,
467
+ "train_loss": 0.3299662241814446,
468
+ "train_runtime": 2859.8545,
469
+ "train_samples_per_second": 2.089,
470
+ "train_steps_per_second": 0.261
471
+ }
472
+ ],
473
+ "logging_steps": 10,
474
+ "max_steps": 747,
475
+ "num_input_tokens_seen": 0,
476
+ "num_train_epochs": 1,
477
+ "save_steps": 1000,
478
+ "total_flos": 1.7883373351469056e+17,
479
+ "train_batch_size": 1,
480
+ "trial_name": null,
481
+ "trial_params": null
482
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05d9caf8806a8cf459511820a5f5aad699ab76b8ce2d0478c978f6d2e0bdc492
3
+ size 4984
training_eval_loss.png ADDED
training_loss.png ADDED