import torch import chatglm_cpp from typing import Dict, List, Any # get dtype # dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 TURN_BREAKER = "<||turn_breaker||>" SYSTEM_SYMBOL = "<||system_symbol||>" USER_SYMBOL = "<||user_symbol||>" ASSISTANT_SYMBOL = "<||assistant_symbol||>" class EndpointHandler: def __init__(self, path=""): # load the model self.pipeline = chatglm_cpp.Pipeline(f"{path}/q5_1.bin") def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) str_messages = inputs.split(TURN_BREAKER) cpp_messages = [chatglm_cpp.ChatMessage( role="system", content=str_messages[0].replace(SYSTEM_SYMBOL, "") )] for msg in str_messages[1:]: if USER_SYMBOL in msg: cpp_messages.append( chatglm_cpp.ChatMessage( role="user", content=msg.replace(USER_SYMBOL, "") )) else: cpp_messages.append( chatglm_cpp.ChatMessage( role="assistant", content=msg.replace(ASSISTANT_SYMBOL, "") )) # pass inputs with all kwargs in data if parameters is not None: prediction = self.pipeline.chat(cpp_messages, **parameters) else: prediction = self.pipeline.chat(cpp_messages) # postprocess the prediction return prediction.content