File size: 1,814 Bytes
617699b
815bb6a
617699b
 
 
 
 
1d3eea7
617699b
 
 
 
 
 
 
 
fe638e9
617699b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d3eea7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- generated_from_trainer
model-index:
- name: Meta-Llama-3-8B_derta
  results: []
license: apache-2.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Meta-Llama-3-8B-Instruct_derta_100step

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [Evol-Instruct](https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k) and [BeaverTails](https://huggingface.co/datasets/PKU-Alignment/BeaverTails) dataset.
The model is continued to train 100 steps with DeRTa on LLaMA3-8B-Instruct.

## Model description

Please refer to the paper [Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training](https://arxiv.org/abs/2407.09121) and GitHub [DeRTa](https://github.com/RobustNLP/DeRTa).

Input format:
```
[INST] Your Instruction [\INST]
```
## Intended uses & limitations

The model is trained with DeRTa, showing a high safety performance.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- weight_decay: 2e-5
- eval_batch_size: 1
- seed: 1
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0

### Training results



### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.0+cu118
- Datasets 2.10.0
- Tokenizers 0.19.1