--- base_model: llava-hf/llava-1.5-7b-hf library_name: transformers pipeline_tag: image-text-to-text tags: [] --- # Fine-Grained Visual Classification on CUB-200 Project Page: [SelfSynthX](https://github.com/sycny/SelfSynthX). Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044) This model is a fine-tuned multimodal foundation model developed on the [LLaVA-1.5-7B-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) base, optimized for fine-grained visual classification and explainability using the CUB-200 dataset. ## Key Details - **Base Model:** LLaVA-1.5-7B - **Dataset:** CUB-200 (Caltech-UCSD Birds-200-2011) - **Innovation:** - **Self-Synthesized Data:** Generates interpretable explanations by extracting image-specific visual concepts using the Information Bottleneck principle. - **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to progressively improve classification accuracy and explanation quality. - **Intended Use:** Fine-grained bird species identification with human-verifiable explanations. ## How to Use ```python import requests from PIL import Image import torch from transformers import AutoProcessor, LlavaForConditionalGeneration model_id = "YuchengShi/LLaVA-v1.5-7B-CUB-200" model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, ).to("cuda") processor = AutoProcessor.from_pretrained(model_id) conversation = [ { "role": "user", "content": [ {"type": "text", "text": "What are these?"}, {"type": "image"}, ], }, ] prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) image_file = "cub-200/test1.png" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to("cuda", torch.float16) output = model.generate(**inputs, max_new_tokens=200, do_sample=False) print(processor.decode(output[0][2:], skip_special_tokens=True)) ``` ## Training & Evaluation - **Training:** Fine-tuned using LoRA on CUB-200 with iterative rejection sampling. - **Evaluation:** Demonstrates higher accuracy and robust, interpretable explanations compared to baseline models. ## Citation If you use this model, please cite: ```bibtex @inproceedings{ shi2025enhancing, title={Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data}, author={Yucheng Shi and Quanzheng Li and Jin Sun and Xiang Li and Ninghao Liu}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=lHbLpwbEyt} } ```