Add pipeline tag, license and improve tags
Browse filesThis PR adds the missing `pipeline_tag` and `license` to the model card metadata. It also enhances the tags section for better searchability and categorization. The `image-text-to-text` tag reflects the model's ability to perform image classification with text-based explanations.
README.md
CHANGED
@@ -1,27 +1,35 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Fine-Grained Visual Classification on FGVC-Aircraft
|
7 |
|
8 |
-
Project Page: [SelfSynthX](https://github.com/sycny/SelfSynthX).
|
9 |
|
10 |
Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044)
|
11 |
|
|
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
- **
|
18 |
-
- **
|
19 |
-
- **
|
20 |
-
- **Self-Synthesized Data:** Extracts and highlights distinctive aircraft-specific visual features using the Information Bottleneck principle.
|
21 |
-
- **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to improve classification accuracy and explanation quality.
|
22 |
- **Intended Use:** Identification of aircraft models with human-verifiable explanations.
|
23 |
|
24 |
-
## How to Use
|
25 |
|
26 |
```python
|
27 |
import requests
|
@@ -31,8 +39,8 @@ from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
31 |
|
32 |
model_id = "YuchengShi/LLaVA-v1.5-7B-Fgvc"
|
33 |
model = LlavaForConditionalGeneration.from_pretrained(
|
34 |
-
model_id,
|
35 |
-
torch_dtype=torch.float16,
|
36 |
low_cpu_mem_usage=True,
|
37 |
).to("cuda")
|
38 |
processor = AutoProcessor.from_pretrained(model_id)
|
@@ -55,14 +63,14 @@ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
|
55 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
56 |
```
|
57 |
|
58 |
-
## Training & Evaluation
|
59 |
|
60 |
-
- **Training:** Fine-tuned using LoRA on FGVC-Aircraft with iterative rejection sampling.
|
61 |
- **Evaluation:** Achieves high accuracy in distinguishing aircraft types while providing detailed, interpretable explanations.
|
62 |
|
63 |
-
## Citation
|
64 |
|
65 |
-
If you use this model, please cite:
|
66 |
|
67 |
```bibtex
|
68 |
@inproceedings{
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- multimodal
|
7 |
+
- image-classification
|
8 |
+
- explanation
|
9 |
+
- visual-reasoning
|
10 |
+
- fine-grained-classification
|
11 |
+
- llava
|
12 |
+
- fgvc
|
13 |
---
|
14 |
|
15 |
+
# Fine-Grained Visual Classification on FGVC-Aircraft
|
16 |
|
17 |
+
Project Page: [SelfSynthX](https://github.com/sycny/SelfSynthX).
|
18 |
|
19 |
Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044)
|
20 |
|
21 |
+
This model is a fine-tuned multimodal foundation model based on [LLaVA-1.5-7B-hf](https://huggingface.co/llava-hf/llava-1.5-7B-hf), optimized for fine-grained classification of aircraft types using the FGVC-Aircraft dataset.
|
22 |
|
23 |
+
## Key Details
|
24 |
|
25 |
+
- **Base Model:** LLaVA-1.5-7B
|
26 |
+
- **Dataset:** FGVC-Aircraft (Fine-Grained Visual Classification of Aircraft)
|
27 |
+
- **Innovation:**
|
28 |
+
- **Self-Synthesized Data:** Extracts and highlights distinctive aircraft-specific visual features using the Information Bottleneck principle.
|
29 |
+
- **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to improve classification accuracy and explanation quality.
|
|
|
|
|
30 |
- **Intended Use:** Identification of aircraft models with human-verifiable explanations.
|
31 |
|
32 |
+
## How to Use
|
33 |
|
34 |
```python
|
35 |
import requests
|
|
|
39 |
|
40 |
model_id = "YuchengShi/LLaVA-v1.5-7B-Fgvc"
|
41 |
model = LlavaForConditionalGeneration.from_pretrained(
|
42 |
+
model_id,
|
43 |
+
torch_dtype=torch.float16,
|
44 |
low_cpu_mem_usage=True,
|
45 |
).to("cuda")
|
46 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
63 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
64 |
```
|
65 |
|
66 |
+
## Training & Evaluation
|
67 |
|
68 |
+
- **Training:** Fine-tuned using LoRA on FGVC-Aircraft with iterative rejection sampling.
|
69 |
- **Evaluation:** Achieves high accuracy in distinguishing aircraft types while providing detailed, interpretable explanations.
|
70 |
|
71 |
+
## Citation
|
72 |
|
73 |
+
If you use this model, please cite:
|
74 |
|
75 |
```bibtex
|
76 |
@inproceedings{
|