|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import is_torch_available |
|
from transformers.testing_utils import require_torch |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch import nn |
|
|
|
from transformers import ( |
|
Adafactor, |
|
AdamW, |
|
get_constant_schedule, |
|
get_constant_schedule_with_warmup, |
|
get_cosine_schedule_with_warmup, |
|
get_cosine_with_hard_restarts_schedule_with_warmup, |
|
get_inverse_sqrt_schedule, |
|
get_linear_schedule_with_warmup, |
|
get_polynomial_decay_schedule_with_warmup, |
|
) |
|
|
|
|
|
def unwrap_schedule(scheduler, num_steps=10): |
|
lrs = [] |
|
for _ in range(num_steps): |
|
lrs.append(scheduler.get_lr()[0]) |
|
scheduler.step() |
|
return lrs |
|
|
|
|
|
def unwrap_and_save_reload_schedule(scheduler, num_steps=10): |
|
lrs = [] |
|
for step in range(num_steps): |
|
lrs.append(scheduler.get_lr()[0]) |
|
scheduler.step() |
|
if step == num_steps // 2: |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
file_name = os.path.join(tmpdirname, "schedule.bin") |
|
torch.save(scheduler.state_dict(), file_name) |
|
|
|
state_dict = torch.load(file_name) |
|
scheduler.load_state_dict(state_dict) |
|
return lrs |
|
|
|
|
|
@require_torch |
|
class OptimizationTest(unittest.TestCase): |
|
def assertListAlmostEqual(self, list1, list2, tol): |
|
self.assertEqual(len(list1), len(list2)) |
|
for a, b in zip(list1, list2): |
|
self.assertAlmostEqual(a, b, delta=tol) |
|
|
|
def test_adam_w(self): |
|
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) |
|
target = torch.tensor([0.4, 0.2, -0.5]) |
|
criterion = nn.MSELoss() |
|
|
|
optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0) |
|
for _ in range(100): |
|
loss = criterion(w, target) |
|
loss.backward() |
|
optimizer.step() |
|
w.grad.detach_() |
|
w.grad.zero_() |
|
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) |
|
|
|
def test_adafactor(self): |
|
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) |
|
target = torch.tensor([0.4, 0.2, -0.5]) |
|
criterion = nn.MSELoss() |
|
|
|
optimizer = Adafactor( |
|
params=[w], |
|
lr=1e-2, |
|
eps=(1e-30, 1e-3), |
|
clip_threshold=1.0, |
|
decay_rate=-0.8, |
|
beta1=None, |
|
weight_decay=0.0, |
|
relative_step=False, |
|
scale_parameter=False, |
|
warmup_init=False, |
|
) |
|
for _ in range(1000): |
|
loss = criterion(w, target) |
|
loss.backward() |
|
optimizer.step() |
|
w.grad.detach_() |
|
w.grad.zero_() |
|
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) |
|
|
|
|
|
@require_torch |
|
class ScheduleInitTest(unittest.TestCase): |
|
m = nn.Linear(50, 50) if is_torch_available() else None |
|
optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None |
|
num_steps = 10 |
|
|
|
def assertListAlmostEqual(self, list1, list2, tol, msg=None): |
|
self.assertEqual(len(list1), len(list2)) |
|
for a, b in zip(list1, list2): |
|
self.assertAlmostEqual(a, b, delta=tol, msg=msg) |
|
|
|
def test_schedulers(self): |
|
common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10} |
|
|
|
|
|
scheds = { |
|
get_constant_schedule: ({}, [10.0] * self.num_steps), |
|
get_constant_schedule_with_warmup: ( |
|
{"num_warmup_steps": 4}, |
|
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], |
|
), |
|
get_linear_schedule_with_warmup: ( |
|
{**common_kwargs}, |
|
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], |
|
), |
|
get_cosine_schedule_with_warmup: ( |
|
{**common_kwargs}, |
|
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], |
|
), |
|
get_cosine_with_hard_restarts_schedule_with_warmup: ( |
|
{**common_kwargs, "num_cycles": 2}, |
|
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], |
|
), |
|
get_polynomial_decay_schedule_with_warmup: ( |
|
{**common_kwargs, "power": 2.0, "lr_end": 1e-7}, |
|
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], |
|
), |
|
get_inverse_sqrt_schedule: ( |
|
{"num_warmup_steps": 2}, |
|
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], |
|
), |
|
} |
|
|
|
for scheduler_func, data in scheds.items(): |
|
kwargs, expected_learning_rates = data |
|
|
|
scheduler = scheduler_func(self.optimizer, **kwargs) |
|
self.assertEqual(len([scheduler.get_lr()[0]]), 1) |
|
lrs_1 = unwrap_schedule(scheduler, self.num_steps) |
|
self.assertListAlmostEqual( |
|
lrs_1, |
|
expected_learning_rates, |
|
tol=1e-2, |
|
msg=f"failed for {scheduler_func} in normal scheduler", |
|
) |
|
|
|
scheduler = scheduler_func(self.optimizer, **kwargs) |
|
if scheduler_func.__name__ != "get_constant_schedule": |
|
LambdaScheduleWrapper.wrap_scheduler(scheduler) |
|
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) |
|
self.assertListEqual(lrs_1, lrs_2, msg=f"failed for {scheduler_func} in save and reload") |
|
|
|
|
|
class LambdaScheduleWrapper: |
|
"""See https://github.com/huggingface/transformers/issues/21689""" |
|
|
|
def __init__(self, fn): |
|
self.fn = fn |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self.fn(*args, **kwargs) |
|
|
|
@classmethod |
|
def wrap_scheduler(self, scheduler): |
|
scheduler.lr_lambdas = list(map(self, scheduler.lr_lambdas)) |
|
|