|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import hashlib |
|
import unittest |
|
|
|
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available |
|
from transformers.pipelines import DepthEstimationPipeline, pipeline |
|
from transformers.testing_utils import ( |
|
is_pipeline_test, |
|
nested_simplify, |
|
require_tf, |
|
require_timm, |
|
require_torch, |
|
require_vision, |
|
slow, |
|
) |
|
|
|
from .test_pipelines_common import ANY |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
else: |
|
|
|
class Image: |
|
@staticmethod |
|
def open(*args, **kwargs): |
|
pass |
|
|
|
|
|
def hashimage(image: Image) -> str: |
|
m = hashlib.md5(image.tobytes()) |
|
return m.hexdigest() |
|
|
|
|
|
@is_pipeline_test |
|
@require_vision |
|
@require_timm |
|
@require_torch |
|
class DepthEstimationPipelineTests(unittest.TestCase): |
|
model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING |
|
|
|
def get_test_pipeline(self, model, tokenizer, processor): |
|
depth_estimator = DepthEstimationPipeline(model=model, image_processor=processor) |
|
return depth_estimator, [ |
|
"./tests/fixtures/tests_samples/COCO/000000039769.png", |
|
"./tests/fixtures/tests_samples/COCO/000000039769.png", |
|
] |
|
|
|
def run_pipeline_test(self, depth_estimator, examples): |
|
outputs = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs) |
|
import datasets |
|
|
|
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") |
|
outputs = depth_estimator( |
|
[ |
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), |
|
"http://images.cocodataset.org/val2017/000000039769.jpg", |
|
|
|
dataset[0]["file"], |
|
|
|
dataset[1]["file"], |
|
|
|
dataset[2]["file"], |
|
] |
|
) |
|
self.assertEqual( |
|
[ |
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, |
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, |
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, |
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, |
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, |
|
], |
|
outputs, |
|
) |
|
|
|
@require_tf |
|
@unittest.skip("Depth estimation is not implemented in TF") |
|
def test_small_model_tf(self): |
|
pass |
|
|
|
@slow |
|
@require_torch |
|
def test_large_model_pt(self): |
|
model_id = "Intel/dpt-large" |
|
depth_estimator = pipeline("depth-estimation", model=model_id) |
|
outputs = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") |
|
outputs["depth"] = hashimage(outputs["depth"]) |
|
|
|
|
|
|
|
self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item()), 29.304) |
|
self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item()), 2.662) |
|
|
|
@require_torch |
|
def test_small_model_pt(self): |
|
|
|
self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT") |
|
|