|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from transformers import ( |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
TextGenerationPipeline, |
|
logging, |
|
pipeline, |
|
) |
|
from transformers.testing_utils import ( |
|
CaptureLogger, |
|
is_pipeline_test, |
|
require_accelerate, |
|
require_tf, |
|
require_torch, |
|
require_torch_gpu, |
|
require_torch_or_tf, |
|
) |
|
|
|
from .test_pipelines_common import ANY |
|
|
|
|
|
@is_pipeline_test |
|
@require_torch_or_tf |
|
class TextGenerationPipelineTests(unittest.TestCase): |
|
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING |
|
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING |
|
|
|
@require_torch |
|
def test_small_model_pt(self): |
|
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt") |
|
|
|
outputs = text_generator("This is a test", do_sample=False) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." |
|
" oscope. FiliFili@@" |
|
) |
|
} |
|
], |
|
) |
|
|
|
outputs = text_generator(["This is a test", "This is a second test"]) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." |
|
" oscope. FiliFili@@" |
|
) |
|
} |
|
], |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" |
|
" oscope. oscope. FiliFili@@" |
|
) |
|
} |
|
], |
|
], |
|
) |
|
|
|
outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
{"generated_token_ids": ANY(list)}, |
|
{"generated_token_ids": ANY(list)}, |
|
], |
|
) |
|
text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id |
|
text_generator.tokenizer.pad_token = "<pad>" |
|
outputs = text_generator( |
|
["This is a test", "This is a second test"], |
|
do_sample=True, |
|
num_return_sequences=2, |
|
batch_size=2, |
|
return_tensors=True, |
|
) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[ |
|
{"generated_token_ids": ANY(list)}, |
|
{"generated_token_ids": ANY(list)}, |
|
], |
|
[ |
|
{"generated_token_ids": ANY(list)}, |
|
{"generated_token_ids": ANY(list)}, |
|
], |
|
], |
|
) |
|
|
|
@require_tf |
|
def test_small_model_tf(self): |
|
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf") |
|
|
|
|
|
outputs = text_generator("This is a test", do_sample=False) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" |
|
" please," |
|
) |
|
} |
|
], |
|
) |
|
|
|
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" |
|
" please," |
|
) |
|
} |
|
], |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" |
|
" Cannes 閲閲Cannes Cannes Cannes 攵 please," |
|
) |
|
} |
|
], |
|
], |
|
) |
|
|
|
def get_test_pipeline(self, model, tokenizer, processor): |
|
text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer) |
|
return text_generator, ["This is a test", "Another test"] |
|
|
|
def test_stop_sequence_stopping_criteria(self): |
|
prompt = """Hello I believe in""" |
|
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2") |
|
output = text_generator(prompt) |
|
self.assertEqual( |
|
output, |
|
[{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}], |
|
) |
|
|
|
output = text_generator(prompt, stop_sequence=" fe") |
|
self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}]) |
|
|
|
def run_pipeline_test(self, text_generator, _): |
|
model = text_generator.model |
|
tokenizer = text_generator.tokenizer |
|
|
|
outputs = text_generator("This is a test") |
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}]) |
|
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) |
|
|
|
outputs = text_generator("This is a test", return_full_text=False) |
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}]) |
|
self.assertNotIn("This is a test", outputs[0]["generated_text"]) |
|
|
|
text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False) |
|
outputs = text_generator("This is a test") |
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}]) |
|
self.assertNotIn("This is a test", outputs[0]["generated_text"]) |
|
|
|
outputs = text_generator("This is a test", return_full_text=True) |
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}]) |
|
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) |
|
|
|
outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], |
|
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], |
|
], |
|
) |
|
|
|
if text_generator.tokenizer.pad_token is not None: |
|
outputs = text_generator( |
|
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True |
|
) |
|
self.assertEqual( |
|
outputs, |
|
[ |
|
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], |
|
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], |
|
], |
|
) |
|
|
|
with self.assertRaises(ValueError): |
|
outputs = text_generator("test", return_full_text=True, return_text=True) |
|
with self.assertRaises(ValueError): |
|
outputs = text_generator("test", return_full_text=True, return_tensors=True) |
|
with self.assertRaises(ValueError): |
|
outputs = text_generator("test", return_text=True, return_tensors=True) |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
text_generator.tokenizer.bos_token_id is not None |
|
or "Pegasus" in tokenizer.__class__.__name__ |
|
or "Git" in model.__class__.__name__ |
|
): |
|
outputs = text_generator("") |
|
self.assertEqual(outputs, [{"generated_text": ANY(str)}]) |
|
else: |
|
with self.assertRaises((ValueError, AssertionError)): |
|
outputs = text_generator("") |
|
|
|
if text_generator.framework == "tf": |
|
|
|
|
|
|
|
return |
|
|
|
|
|
|
|
EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] |
|
if ( |
|
tokenizer.model_max_length < 10000 |
|
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS |
|
): |
|
|
|
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): |
|
text_generator("This is a test" * 500, max_new_tokens=20) |
|
|
|
outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20) |
|
|
|
with self.assertRaises(ValueError): |
|
text_generator( |
|
"This is a test" * 500, |
|
handle_long_generation="hole", |
|
max_new_tokens=tokenizer.model_max_length + 10, |
|
) |
|
|
|
@require_torch |
|
@require_accelerate |
|
@require_torch_gpu |
|
def test_small_model_pt_bloom_accelerate(self): |
|
import torch |
|
|
|
|
|
pipe = pipeline( |
|
model="hf-internal-testing/tiny-random-bloom", |
|
model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16}, |
|
) |
|
self.assertEqual(pipe.model.device, torch.device(0)) |
|
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16) |
|
out = pipe("This is a test") |
|
self.assertEqual( |
|
out, |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test test test test test test test test test test test test test test test test" |
|
" test" |
|
) |
|
} |
|
], |
|
) |
|
|
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16) |
|
self.assertEqual(pipe.model.device, torch.device(0)) |
|
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16) |
|
out = pipe("This is a test") |
|
self.assertEqual( |
|
out, |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test test test test test test test test test test test test test test test test" |
|
" test" |
|
) |
|
} |
|
], |
|
) |
|
|
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto") |
|
self.assertEqual(pipe.model.device, torch.device(0)) |
|
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32) |
|
out = pipe("This is a test") |
|
self.assertEqual( |
|
out, |
|
[ |
|
{ |
|
"generated_text": ( |
|
"This is a test test test test test test test test test test test test test test test test" |
|
" test" |
|
) |
|
} |
|
], |
|
) |
|
|
|
@require_torch |
|
@require_torch_gpu |
|
def test_small_model_fp16(self): |
|
import torch |
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device=0, torch_dtype=torch.float16) |
|
pipe("This is a test") |
|
|
|
@require_torch |
|
@require_accelerate |
|
@require_torch_gpu |
|
def test_pipeline_accelerate_top_p(self): |
|
import torch |
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16) |
|
pipe("This is a test", do_sample=True, top_p=0.5) |
|
|
|
def test_pipeline_length_setting_warning(self): |
|
prompt = """Hello world""" |
|
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2") |
|
if text_generator.model.framework == "tf": |
|
logger = logging.get_logger("transformers.generation.tf_utils") |
|
else: |
|
logger = logging.get_logger("transformers.generation.utils") |
|
logger_msg = "Both `max_new_tokens`" |
|
|
|
|
|
with CaptureLogger(logger) as cl: |
|
_ = text_generator(prompt, max_length=10, max_new_tokens=1) |
|
self.assertIn(logger_msg, cl.out) |
|
|
|
|
|
with CaptureLogger(logger) as cl: |
|
_ = text_generator(prompt, max_new_tokens=1) |
|
self.assertNotIn(logger_msg, cl.out) |
|
|
|
with CaptureLogger(logger) as cl: |
|
_ = text_generator(prompt, max_length=10) |
|
self.assertNotIn(logger_msg, cl.out) |
|
|