|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
import shutil |
|
import sys |
|
import tempfile |
|
import unittest |
|
|
|
import black |
|
|
|
|
|
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) |
|
sys.path.append(os.path.join(git_repo_path, "utils")) |
|
|
|
import check_copies |
|
|
|
|
|
|
|
|
|
REFERENCE_CODE = """ def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
# The output weights are the same as the input embeddings, but there is |
|
# an output-only bias for each token. |
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
""" |
|
|
|
|
|
class CopyCheckTester(unittest.TestCase): |
|
def setUp(self): |
|
self.transformer_dir = tempfile.mkdtemp() |
|
os.makedirs(os.path.join(self.transformer_dir, "models/bert/")) |
|
check_copies.TRANSFORMER_PATH = self.transformer_dir |
|
shutil.copy( |
|
os.path.join(git_repo_path, "src/transformers/models/bert/modeling_bert.py"), |
|
os.path.join(self.transformer_dir, "models/bert/modeling_bert.py"), |
|
) |
|
|
|
def tearDown(self): |
|
check_copies.TRANSFORMER_PATH = "src/transformers" |
|
shutil.rmtree(self.transformer_dir) |
|
|
|
def check_copy_consistency(self, comment, class_name, class_code, overwrite_result=None): |
|
code = comment + f"\nclass {class_name}(nn.Module):\n" + class_code |
|
if overwrite_result is not None: |
|
expected = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result |
|
mode = black.Mode(target_versions={black.TargetVersion.PY35}, line_length=119) |
|
code = black.format_str(code, mode=mode) |
|
fname = os.path.join(self.transformer_dir, "new_code.py") |
|
with open(fname, "w", newline="\n") as f: |
|
f.write(code) |
|
if overwrite_result is None: |
|
self.assertTrue(len(check_copies.is_copy_consistent(fname)) == 0) |
|
else: |
|
check_copies.is_copy_consistent(f.name, overwrite=True) |
|
with open(fname, "r") as f: |
|
self.assertTrue(f.read(), expected) |
|
|
|
def test_find_code_in_transformers(self): |
|
code = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") |
|
self.assertEqual(code, REFERENCE_CODE) |
|
|
|
def test_is_copy_consistent(self): |
|
|
|
self.check_copy_consistency( |
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", |
|
"BertLMPredictionHead", |
|
REFERENCE_CODE + "\n", |
|
) |
|
|
|
|
|
self.check_copy_consistency( |
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead", |
|
"BertLMPredictionHead", |
|
REFERENCE_CODE, |
|
) |
|
|
|
|
|
self.check_copy_consistency( |
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", |
|
"TestModelLMPredictionHead", |
|
re.sub("Bert", "TestModel", REFERENCE_CODE), |
|
) |
|
|
|
|
|
long_class_name = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" |
|
self.check_copy_consistency( |
|
f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}", |
|
f"{long_class_name}LMPredictionHead", |
|
re.sub("Bert", long_class_name, REFERENCE_CODE), |
|
) |
|
|
|
|
|
self.check_copy_consistency( |
|
"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel", |
|
"TestModelLMPredictionHead", |
|
REFERENCE_CODE, |
|
overwrite_result=re.sub("Bert", "TestModel", REFERENCE_CODE), |
|
) |
|
|
|
def test_convert_to_localized_md(self): |
|
localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"] |
|
|
|
md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" |
|
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" |
|
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" |
|
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." |
|
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," |
|
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" |
|
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" |
|
" method has been applied to compress GPT2 into" |
|
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" |
|
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," |
|
" Multilingual BERT into" |
|
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" |
|
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" |
|
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" |
|
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" |
|
" Luong, Quoc V. Le, Christopher D. Manning." |
|
) |
|
localized_md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" |
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" |
|
) |
|
converted_md_list_sample = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" |
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." |
|
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" |
|
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" |
|
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" |
|
" method has been applied to compress GPT2 into" |
|
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" |
|
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," |
|
" Multilingual BERT into" |
|
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" |
|
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" |
|
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" |
|
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," |
|
" Christopher D. Manning 发布。\n" |
|
) |
|
|
|
num_models_equal, converted_md_list = check_copies.convert_to_localized_md( |
|
md_list, localized_md_list, localized_readme["format_model_list"] |
|
) |
|
|
|
self.assertFalse(num_models_equal) |
|
self.assertEqual(converted_md_list, converted_md_list_sample) |
|
|
|
num_models_equal, converted_md_list = check_copies.convert_to_localized_md( |
|
md_list, converted_md_list, localized_readme["format_model_list"] |
|
) |
|
|
|
|
|
self.assertTrue(num_models_equal) |
|
|
|
link_changed_md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" |
|
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" |
|
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" |
|
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." |
|
) |
|
link_unchanged_md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" |
|
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" |
|
) |
|
converted_md_list_sample = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" |
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" |
|
) |
|
|
|
num_models_equal, converted_md_list = check_copies.convert_to_localized_md( |
|
link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"] |
|
) |
|
|
|
|
|
self.assertEqual(converted_md_list, converted_md_list_sample) |
|
|