|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
from transformers import is_torch_available, is_vision_available |
|
from transformers.testing_utils import get_tests_dir, is_tool_test |
|
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
authorized_types = ["text", "image", "audio"] |
|
|
|
|
|
def create_inputs(input_types: List[str]): |
|
inputs = [] |
|
|
|
for input_type in input_types: |
|
if input_type == "text": |
|
inputs.append("Text input") |
|
elif input_type == "image": |
|
inputs.append( |
|
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((512, 512)) |
|
) |
|
elif input_type == "audio": |
|
inputs.append(torch.ones(3000)) |
|
elif isinstance(input_type, list): |
|
inputs.append(create_inputs(input_type)) |
|
else: |
|
raise ValueError(f"Invalid type requested: {input_type}") |
|
|
|
return inputs |
|
|
|
|
|
def output_types(outputs: List): |
|
output_types = [] |
|
|
|
for output in outputs: |
|
if isinstance(output, (str, AgentText)): |
|
output_types.append("text") |
|
elif isinstance(output, (Image.Image, AgentImage)): |
|
output_types.append("image") |
|
elif isinstance(output, (torch.Tensor, AgentAudio)): |
|
output_types.append("audio") |
|
else: |
|
raise ValueError(f"Invalid output: {output}") |
|
|
|
return output_types |
|
|
|
|
|
@is_tool_test |
|
class ToolTesterMixin: |
|
def test_inputs_outputs(self): |
|
self.assertTrue(hasattr(self.tool, "inputs")) |
|
self.assertTrue(hasattr(self.tool, "outputs")) |
|
|
|
inputs = self.tool.inputs |
|
for _input in inputs: |
|
if isinstance(_input, list): |
|
for __input in _input: |
|
self.assertTrue(__input in authorized_types) |
|
else: |
|
self.assertTrue(_input in authorized_types) |
|
|
|
outputs = self.tool.outputs |
|
for _output in outputs: |
|
self.assertTrue(_output in authorized_types) |
|
|
|
def test_call(self): |
|
inputs = create_inputs(self.tool.inputs) |
|
outputs = self.tool(*inputs) |
|
|
|
|
|
if len(self.tool.outputs) == 1: |
|
outputs = [outputs] |
|
|
|
self.assertListEqual(output_types(outputs), self.tool.outputs) |
|
|
|
def test_common_attributes(self): |
|
self.assertTrue(hasattr(self.tool, "description")) |
|
self.assertTrue(hasattr(self.tool, "default_checkpoint")) |
|
self.assertTrue(self.tool.description.startswith("This is a tool that")) |
|
|
|
def test_agent_types_outputs(self): |
|
inputs = create_inputs(self.tool.inputs) |
|
outputs = self.tool(*inputs) |
|
|
|
if not isinstance(outputs, list): |
|
outputs = [outputs] |
|
|
|
self.assertEqual(len(outputs), len(self.tool.outputs)) |
|
|
|
for output, output_type in zip(outputs, self.tool.outputs): |
|
agent_type = AGENT_TYPE_MAPPING[output_type] |
|
self.assertTrue(isinstance(output, agent_type)) |
|
|
|
def test_agent_types_inputs(self): |
|
inputs = create_inputs(self.tool.inputs) |
|
|
|
_inputs = [] |
|
|
|
for _input, input_type in zip(inputs, self.tool.inputs): |
|
if isinstance(input_type, list): |
|
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) |
|
else: |
|
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) |
|
|
|
|
|
outputs = self.tool(*inputs) |
|
|
|
if not isinstance(outputs, list): |
|
outputs = [outputs] |
|
|
|
self.assertEqual(len(outputs), len(self.tool.outputs)) |
|
|