File size: 2,013 Bytes
dd78c89 45ad005 dd78c89 45ad005 dd78c89 a647488 dd78c89 220d03b dd78c89 b977a49 7454e0a 200e42f b3ea248 2cd9571 cfe7cd0 a647488 dd78c89 220d03b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- en
- es
license: apache-2.0
tags:
- generated_from_keras_callback
widget:
- text: Best cast iron skillet you will ever buy. I would definitely recommend.
example_title: Example 1
base_model: google/mt5-small
model-index:
- name: ZachBeesley/mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ZachBeesley/mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.0941
- Validation Loss: 3.3710
- Epoch: 7
## Model description
Text-summarization model that can summarize English and Spanish contexts.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3116 | 4.2338 | 0 |
| 5.8732 | 3.7347 | 1 |
| 5.1341 | 3.5766 | 2 |
| 4.7232 | 3.4923 | 3 |
| 4.4641 | 3.4383 | 4 |
| 4.2974 | 3.4019 | 5 |
| 4.1615 | 3.3797 | 6 |
| 4.0941 | 3.3710 | 7 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3 |