File size: 2,013 Bytes
dd78c89
45ad005
 
 
dd78c89
 
 
45ad005
 
 
 
dd78c89
 
 
 
 
 
 
 
 
 
 
 
a647488
 
 
dd78c89
 
 
220d03b
dd78c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b977a49
7454e0a
200e42f
b3ea248
2cd9571
cfe7cd0
a647488
dd78c89
 
 
 
 
 
 
220d03b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
language:
- en
- es
license: apache-2.0
tags:
- generated_from_keras_callback
widget:
- text: Best cast iron skillet you will ever buy. I would definitely recommend.
  example_title: Example 1
base_model: google/mt5-small
model-index:
- name: ZachBeesley/mt5-small-finetuned-amazon-en-es
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# ZachBeesley/mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.0941
- Validation Loss: 3.3710
- Epoch: 7

## Model description

Text-summarization model that can summarize English and Spanish contexts.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3116     | 4.2338          | 0     |
| 5.8732     | 3.7347          | 1     |
| 5.1341     | 3.5766          | 2     |
| 4.7232     | 3.4923          | 3     |
| 4.4641     | 3.4383          | 4     |
| 4.2974     | 3.4019          | 5     |
| 4.1615     | 3.3797          | 6     |
| 4.0941     | 3.3710          | 7     |


### Framework versions

- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3