wav2vec / README.md
Zarakun's picture
zarakun/wav2vec
e5a89aa verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
  - f1
model-index:
  - name: wav2vec
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.01
          split: test
          args: v0.01
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8938656280428432
          - name: F1
            type: f1
            value: 0.8871854520046679

wav2vec

This model is a fine-tuned version of facebook/wav2vec2-base on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4992
  • Accuracy: 0.8939
  • F1: 0.8872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 80
  • eval_batch_size: 80
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6895 1.0 639 0.7875 0.8773 0.7995
0.4171 2.0 1278 0.5445 0.8932 0.8675
0.2706 3.0 1917 0.4992 0.8939 0.8872

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0