--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy - f1 model-index: - name: wav2vec results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.01 split: test args: v0.01 metrics: - name: Accuracy type: accuracy value: 0.8909444985394352 - name: F1 type: f1 value: 0.8408887171290298 --- # wav2vec This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 0.8904 - Accuracy: 0.8909 - F1: 0.8409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 240 - eval_batch_size: 240 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.4272 | 1.0 | 213 | 1.3926 | 0.8845 | 0.8359 | | 0.9354 | 2.0 | 426 | 0.9938 | 0.8877 | 0.8598 | | 0.7761 | 3.0 | 639 | 0.8904 | 0.8909 | 0.8409 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0