--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy - f1 model-index: - name: wav2vec results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.01 split: test args: v0.01 metrics: - name: Accuracy type: accuracy value: 0.8938656280428432 - name: F1 type: f1 value: 0.8871854520046679 --- # wav2vec This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 0.4992 - Accuracy: 0.8939 - F1: 0.8872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 80 - eval_batch_size: 80 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6895 | 1.0 | 639 | 0.7875 | 0.8773 | 0.7995 | | 0.4171 | 2.0 | 1278 | 0.5445 | 0.8932 | 0.8675 | | 0.2706 | 3.0 | 1917 | 0.4992 | 0.8939 | 0.8872 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0