|
import joblib
|
|
import re
|
|
import pandas as pd
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from fastapi import FastAPI
|
|
from pydantic import BaseModel
|
|
|
|
|
|
vectorizer = joblib.load("vectorizer.joblib")
|
|
model = joblib.load("naive_bayes_model.joblib")
|
|
|
|
app = FastAPI()
|
|
|
|
class URLInput(BaseModel):
|
|
url: str
|
|
|
|
def preprocess_url(url):
|
|
url = re.sub(r"http\S+", "", url)
|
|
url = re.sub(r"\d+", "", url)
|
|
url = re.sub(r"\W", " ", url)
|
|
url = url.lower()
|
|
return url
|
|
|
|
@app.post("/predict")
|
|
def predict_url(url_input: URLInput):
|
|
processed_url = preprocess_url(url_input.url)
|
|
vectorized_url = vectorizer.transform([processed_url])
|
|
prediction = model.predict(vectorized_url)
|
|
return {"prediction": prediction[0]}
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|