Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.naive_bayes import MultinomialNB
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
import nltk
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
import re
|
9 |
+
|
10 |
+
# Download NLTK stopwords
|
11 |
+
nltk.download('stopwords')
|
12 |
+
|
13 |
+
# Load dataset
|
14 |
+
# Assuming you have a CSV file with 'url' and 'label' columns
|
15 |
+
data = pd.read_csv('malicious_phish.csv')
|
16 |
+
|
17 |
+
# Preprocess URLs
|
18 |
+
def preprocess_url(url):
|
19 |
+
url = re.sub(r"http\S+", "", url) # Remove http links
|
20 |
+
url = re.sub(r"\d+", "", url) # Remove digits
|
21 |
+
url = re.sub(r"\W", " ", url) # Remove non-word characters
|
22 |
+
url = url.lower() # Convert to lowercase
|
23 |
+
return url
|
24 |
+
|
25 |
+
data['url'] = data['url'].apply(preprocess_url)
|
26 |
+
|
27 |
+
# Split data into training and testing sets
|
28 |
+
X = data['url']
|
29 |
+
y = data['type']
|
30 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
31 |
+
|
32 |
+
# Vectorize URLs using TF-IDF
|
33 |
+
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english'))
|
34 |
+
X_train_tfidf = vectorizer.fit_transform(X_train)
|
35 |
+
X_test_tfidf = vectorizer.transform(X_test)
|
36 |
+
|
37 |
+
# Train a Naive Bayes classifier
|
38 |
+
model = MultinomialNB()
|
39 |
+
model.fit(X_train_tfidf, y_train)
|
40 |
+
|
41 |
+
# Predict and evaluate
|
42 |
+
y_pred = model.predict(X_test_tfidf)
|
43 |
+
accuracy = accuracy_score(y_test, y_pred)
|
44 |
+
print(f"Accuracy: {accuracy * 100:.2f}%")
|
45 |
+
|
46 |
+
# Function to predict if a URL is malicious
|
47 |
+
def predict_url(url):
|
48 |
+
processed_url = preprocess_url(url)
|
49 |
+
vectorized_url = vectorizer.transform([processed_url])
|
50 |
+
prediction = model.predict(vectorized_url)
|
51 |
+
return prediction[0]
|
52 |
+
|
53 |
+
# Example usage
|
54 |
+
print(predict_url("br-icloud.com.br"))
|