File size: 9,621 Bytes
1409a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2f573
 
 
 
 
1409a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d144e
1409a3f
 
 
 
 
 
21d144e
3193dc1
 
73480b8
 
6c6750c
 
632228d
 
61e2b06
 
3337532
 
c36f6b4
 
a2684d8
 
107ca20
 
6faeaec
 
45d5d44
 
9276287
 
bd6d209
 
9d62c4a
 
1bfda2d
 
7c78e35
 
5d05830
 
bc98d9f
 
7e0d0f5
 
99b765f
f2e8e9d
 
495ea56
 
919b6f6
 
f001dd2
 
0483205
6134da3
 
c22c8c7
 
2338dbd
 
856a5c6
 
31e052e
7ba117a
 
ec6ac15
 
22dab36
 
8792f56
 
c3ec567
 
b6853d9
 
7c9c4a0
 
056dfc8
 
22b8a49
 
8882df2
 
a3e01d0
 
3e9a881
 
612571d
 
0035e1e
 
cc3bcb8
 
b5f97ee
 
e4f1dfb
 
a790d55
 
524edde
 
1dd8b95
4f2f573
 
1409a3f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Zemulax/masked-lm-tpu
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Zemulax/masked-lm-tpu

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 7.7770
- Train Accuracy: 0.0241
- Validation Loss: 7.7589
- Validation Accuracy: 0.0230
- Epoch: 98

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 223250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 11750, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 10.2868    | 0.0            | 10.2891         | 0.0                 | 0     |
| 10.2817    | 0.0000         | 10.2764         | 0.0                 | 1     |
| 10.2772    | 0.0000         | 10.2667         | 0.0000              | 2     |
| 10.2604    | 0.0000         | 10.2521         | 0.0                 | 3     |
| 10.2421    | 0.0000         | 10.2282         | 0.0000              | 4     |
| 10.2219    | 0.0            | 10.2010         | 0.0                 | 5     |
| 10.1957    | 0.0            | 10.1669         | 0.0                 | 6     |
| 10.1667    | 0.0000         | 10.1388         | 0.0000              | 7     |
| 10.1278    | 0.0000         | 10.0908         | 0.0000              | 8     |
| 10.0848    | 0.0000         | 10.0405         | 0.0001              | 9     |
| 10.0496    | 0.0002         | 9.9921          | 0.0007              | 10    |
| 9.9940     | 0.0010         | 9.9422          | 0.0039              | 11    |
| 9.9424     | 0.0035         | 9.8765          | 0.0110              | 12    |
| 9.8826     | 0.0092         | 9.8156          | 0.0182              | 13    |
| 9.8225     | 0.0155         | 9.7461          | 0.0209              | 14    |
| 9.7670     | 0.0201         | 9.6768          | 0.0222              | 15    |
| 9.7065     | 0.0219         | 9.6127          | 0.0222              | 16    |
| 9.6352     | 0.0227         | 9.5445          | 0.0220              | 17    |
| 9.5757     | 0.0226         | 9.4795          | 0.0219              | 18    |
| 9.4894     | 0.0232         | 9.3985          | 0.0222              | 19    |
| 9.4277     | 0.0234         | 9.3386          | 0.0222              | 20    |
| 9.3676     | 0.0229         | 9.2753          | 0.0220              | 21    |
| 9.2980     | 0.0229         | 9.2170          | 0.0219              | 22    |
| 9.2361     | 0.0233         | 9.1518          | 0.0219              | 23    |
| 9.1515     | 0.0236         | 9.0827          | 0.0223              | 24    |
| 9.1171     | 0.0228         | 9.0406          | 0.0218              | 25    |
| 9.0447     | 0.0234         | 8.9867          | 0.0218              | 26    |
| 9.0119     | 0.0229         | 8.9307          | 0.0221              | 27    |
| 8.9625     | 0.0229         | 8.8969          | 0.0221              | 28    |
| 8.9098     | 0.0230         | 8.8341          | 0.0223              | 29    |
| 8.8726     | 0.0227         | 8.8118          | 0.0220              | 30    |
| 8.8574     | 0.0223         | 8.7910          | 0.0219              | 31    |
| 8.7798     | 0.0231         | 8.7506          | 0.0221              | 32    |
| 8.7535     | 0.0231         | 8.7055          | 0.0222              | 33    |
| 8.7333     | 0.0228         | 8.6801          | 0.0223              | 34    |
| 8.6985     | 0.0231         | 8.6837          | 0.0220              | 35    |
| 8.6816     | 0.0229         | 8.6243          | 0.0223              | 36    |
| 8.6356     | 0.0228         | 8.6323          | 0.0217              | 37    |
| 8.6392     | 0.0225         | 8.5603          | 0.0225              | 38    |
| 8.5802     | 0.0233         | 8.5722          | 0.0219              | 39    |
| 8.5825     | 0.0228         | 8.5548          | 0.0220              | 40    |
| 8.5625     | 0.0228         | 8.5272          | 0.0220              | 41    |
| 8.5415     | 0.0228         | 8.5200          | 0.0222              | 42    |
| 8.5124     | 0.0230         | 8.4787          | 0.0222              | 43    |
| 8.4999     | 0.0229         | 8.4819          | 0.0218              | 44    |
| 8.4561     | 0.0235         | 8.4453          | 0.0221              | 45    |
| 8.4854     | 0.0223         | 8.4378          | 0.0220              | 46    |
| 8.4367     | 0.0229         | 8.4212          | 0.0222              | 47    |
| 8.4096     | 0.0232         | 8.4033          | 0.0221              | 48    |
| 8.4162     | 0.0228         | 8.3869          | 0.0221              | 49    |
| 8.4005     | 0.0229         | 8.3768          | 0.0218              | 50    |
| 8.3583     | 0.0235         | 8.3470          | 0.0224              | 51    |
| 8.3428     | 0.0235         | 8.3540          | 0.0221              | 52    |
| 8.3491     | 0.0231         | 8.3201          | 0.0225              | 53    |
| 8.3551     | 0.0231         | 8.3382          | 0.0221              | 54    |
| 8.3186     | 0.0231         | 8.3136          | 0.0219              | 55    |
| 8.3139     | 0.0226         | 8.2844          | 0.0222              | 56    |
| 8.3170     | 0.0229         | 8.2740          | 0.0221              | 57    |
| 8.2886     | 0.0231         | 8.2485          | 0.0223              | 58    |
| 8.2648     | 0.0233         | 8.2336          | 0.0223              | 59    |
| 8.2714     | 0.0225         | 8.2321          | 0.0221              | 60    |
| 8.2446     | 0.0233         | 8.2135          | 0.0223              | 61    |
| 8.2303     | 0.0230         | 8.1980          | 0.0223              | 62    |
| 8.2022     | 0.0237         | 8.1996          | 0.0222              | 63    |
| 8.2222     | 0.0227         | 8.1822          | 0.0222              | 64    |
| 8.1690     | 0.0236         | 8.2005          | 0.0220              | 65    |
| 8.1741     | 0.0233         | 8.1446          | 0.0226              | 66    |
| 8.1990     | 0.0224         | 8.1586          | 0.0219              | 67    |
| 8.1395     | 0.0236         | 8.1243          | 0.0225              | 68    |
| 8.1675     | 0.0229         | 8.1275          | 0.0222              | 69    |
| 8.1432     | 0.0229         | 8.1374          | 0.0217              | 70    |
| 8.1197     | 0.0234         | 8.1078          | 0.0221              | 71    |
| 8.1046     | 0.0232         | 8.0991          | 0.0221              | 72    |
| 8.1013     | 0.0231         | 8.0794          | 0.0222              | 73    |
| 8.0887     | 0.0228         | 8.0720          | 0.0221              | 74    |
| 8.0661     | 0.0233         | 8.0573          | 0.0222              | 75    |
| 8.0548     | 0.0231         | 8.0313          | 0.0226              | 76    |
| 8.0307     | 0.0235         | 8.0278          | 0.0222              | 77    |
| 8.0626     | 0.0226         | 8.0084          | 0.0224              | 78    |
| 8.0276     | 0.0229         | 8.0099          | 0.0221              | 79    |
| 8.0213     | 0.0231         | 7.9930          | 0.0222              | 80    |
| 7.9798     | 0.0237         | 7.9742          | 0.0224              | 81    |
| 8.0135     | 0.0226         | 7.9857          | 0.0218              | 82    |
| 7.9500     | 0.0235         | 7.9505          | 0.0223              | 83    |
| 7.9519     | 0.0234         | 7.9711          | 0.0217              | 84    |
| 7.9616     | 0.0228         | 7.9288          | 0.0223              | 85    |
| 7.9803     | 0.0225         | 7.8997          | 0.0226              | 86    |
| 7.9369     | 0.0227         | 7.9015          | 0.0225              | 87    |
| 7.9309     | 0.0229         | 7.9010          | 0.0224              | 88    |
| 7.9367     | 0.0226         | 7.8988          | 0.0220              | 89    |
| 7.8840     | 0.0230         | 7.8774          | 0.0216              | 90    |
| 7.8785     | 0.0233         | 7.8527          | 0.0225              | 91    |
| 7.8998     | 0.0226         | 7.8509          | 0.0219              | 92    |
| 7.8451     | 0.0232         | 7.8488          | 0.0221              | 93    |
| 7.8596     | 0.0231         | 7.8310          | 0.0222              | 94    |
| 7.8434     | 0.0231         | 7.8168          | 0.0229              | 95    |
| 7.7929     | 0.0238         | 7.7815          | 0.0233              | 96    |
| 7.8174     | 0.0236         | 7.7857          | 0.0232              | 97    |
| 7.7770     | 0.0241         | 7.7589          | 0.0230              | 98    |


### Framework versions

- Transformers 4.30.1
- TensorFlow 2.12.0
- Tokenizers 0.13.3