Zengwei commited on
Commit
34ed05e
·
1 Parent(s): 50e0e36

upload files

Browse files
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ See https://github.com/k2-fsa/icefall/pull/1766 for details
data/lang_bpe_500/bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c53433de083c4a6ad12d034550ef22de68cec62c4f58932a7b6b8b2f1e743fa5
3
+ size 244865
data/lang_bpe_500/tokens.txt ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <blk> 0
2
+ <sos/eos> 1
3
+ <unk> 2
4
+ S 3
5
+ ▁THE 4
6
+ ▁A 5
7
+ T 6
8
+ ▁AND 7
9
+ ED 8
10
+ ▁OF 9
11
+ ▁TO 10
12
+ E 11
13
+ D 12
14
+ N 13
15
+ ING 14
16
+ ▁IN 15
17
+ Y 16
18
+ M 17
19
+ C 18
20
+ ▁I 19
21
+ A 20
22
+ P 21
23
+ ▁HE 22
24
+ R 23
25
+ O 24
26
+ L 25
27
+ RE 26
28
+ I 27
29
+ U 28
30
+ ER 29
31
+ ▁IT 30
32
+ LY 31
33
+ ▁THAT 32
34
+ ▁WAS 33
35
+ ▁ 34
36
+ ▁S 35
37
+ AR 36
38
+ ▁BE 37
39
+ F 38
40
+ ▁C 39
41
+ IN 40
42
+ B 41
43
+ ▁FOR 42
44
+ OR 43
45
+ LE 44
46
+ ' 45
47
+ ▁HIS 46
48
+ ▁YOU 47
49
+ AL 48
50
+ ▁RE 49
51
+ V 50
52
+ ▁B 51
53
+ G 52
54
+ RI 53
55
+ ▁E 54
56
+ ▁WITH 55
57
+ ▁T 56
58
+ ▁AS 57
59
+ LL 58
60
+ ▁P 59
61
+ ▁HER 60
62
+ ST 61
63
+ ▁HAD 62
64
+ ▁SO 63
65
+ ▁F 64
66
+ W 65
67
+ CE 66
68
+ ▁IS 67
69
+ ND 68
70
+ ▁NOT 69
71
+ TH 70
72
+ ▁BUT 71
73
+ EN 72
74
+ ▁SHE 73
75
+ ▁ON 74
76
+ VE 75
77
+ ON 76
78
+ SE 77
79
+ ▁DE 78
80
+ UR 79
81
+ ▁G 80
82
+ CH 81
83
+ K 82
84
+ TER 83
85
+ ▁AT 84
86
+ IT 85
87
+ ▁ME 86
88
+ RO 87
89
+ NE 88
90
+ RA 89
91
+ ES 90
92
+ IL 91
93
+ NG 92
94
+ IC 93
95
+ ▁NO 94
96
+ ▁HIM 95
97
+ ENT 96
98
+ IR 97
99
+ ▁WE 98
100
+ H 99
101
+ ▁DO 100
102
+ ▁ALL 101
103
+ ▁HAVE 102
104
+ LO 103
105
+ ▁BY 104
106
+ ▁MY 105
107
+ ▁MO 106
108
+ ▁THIS 107
109
+ LA 108
110
+ ▁ST 109
111
+ ▁WHICH 110
112
+ ▁CON 111
113
+ ▁THEY 112
114
+ CK 113
115
+ TE 114
116
+ ▁SAID 115
117
+ ▁FROM 116
118
+ ▁GO 117
119
+ ▁WHO 118
120
+ ▁TH 119
121
+ ▁OR 120
122
+ ▁D 121
123
+ ▁W 122
124
+ VER 123
125
+ LI 124
126
+ ▁SE 125
127
+ ▁ONE 126
128
+ ▁CA 127
129
+ ▁AN 128
130
+ ▁LA 129
131
+ ▁WERE 130
132
+ EL 131
133
+ ▁HA 132
134
+ ▁MAN 133
135
+ ▁FA 134
136
+ ▁EX 135
137
+ AD 136
138
+ ▁SU 137
139
+ RY 138
140
+ ▁MI 139
141
+ AT 140
142
+ ▁BO 141
143
+ ▁WHEN 142
144
+ AN 143
145
+ THER 144
146
+ PP 145
147
+ ATION 146
148
+ ▁FI 147
149
+ ▁WOULD 148
150
+ ▁PRO 149
151
+ OW 150
152
+ ET 151
153
+ ▁O 152
154
+ ▁THERE 153
155
+ ▁HO 154
156
+ ION 155
157
+ ▁WHAT 156
158
+ ▁FE 157
159
+ ▁PA 158
160
+ US 159
161
+ MENT 160
162
+ ▁MA 161
163
+ UT 162
164
+ ▁OUT 163
165
+ ▁THEIR 164
166
+ ▁IF 165
167
+ ▁LI 166
168
+ ▁K 167
169
+ ▁WILL 168
170
+ ▁ARE 169
171
+ ID 170
172
+ ▁RO 171
173
+ DE 172
174
+ TION 173
175
+ ▁WA 174
176
+ PE 175
177
+ ▁UP 176
178
+ ▁SP 177
179
+ ▁PO 178
180
+ IGHT 179
181
+ ▁UN 180
182
+ RU 181
183
+ ▁LO 182
184
+ AS 183
185
+ OL 184
186
+ ▁LE 185
187
+ ▁BEEN 186
188
+ ▁SH 187
189
+ ▁RA 188
190
+ ▁SEE 189
191
+ KE 190
192
+ UL 191
193
+ TED 192
194
+ ▁SA 193
195
+ UN 194
196
+ UND 195
197
+ ANT 196
198
+ ▁NE 197
199
+ IS 198
200
+ ▁THEM 199
201
+ CI 200
202
+ GE 201
203
+ ▁COULD 202
204
+ ▁DIS 203
205
+ OM 204
206
+ ISH 205
207
+ HE 206
208
+ EST 207
209
+ ▁SOME 208
210
+ ENCE 209
211
+ ITY 210
212
+ IVE 211
213
+ ▁US 212
214
+ ▁MORE 213
215
+ ▁EN 214
216
+ ARD 215
217
+ ATE 216
218
+ ▁YOUR 217
219
+ ▁INTO 218
220
+ ▁KNOW 219
221
+ ▁CO 220
222
+ ANCE 221
223
+ ▁TIME 222
224
+ ▁WI 223
225
+ ▁YE 224
226
+ AGE 225
227
+ ▁NOW 226
228
+ TI 227
229
+ FF 228
230
+ ABLE 229
231
+ ▁VERY 230
232
+ ▁LIKE 231
233
+ AM 232
234
+ HI 233
235
+ Z 234
236
+ ▁OTHER 235
237
+ ▁THAN 236
238
+ ▁LITTLE 237
239
+ ▁DID 238
240
+ ▁LOOK 239
241
+ TY 240
242
+ ERS 241
243
+ ▁CAN 242
244
+ ▁CHA 243
245
+ ▁AR 244
246
+ X 245
247
+ FUL 246
248
+ UGH 247
249
+ ▁BA 248
250
+ ▁DAY 249
251
+ ▁ABOUT 250
252
+ TEN 251
253
+ IM 252
254
+ ▁ANY 253
255
+ ▁PRE 254
256
+ ▁OVER 255
257
+ IES 256
258
+ NESS 257
259
+ ME 258
260
+ BLE 259
261
+ ▁M 260
262
+ ROW 261
263
+ ▁HAS 262
264
+ ▁GREAT 263
265
+ ▁VI 264
266
+ TA 265
267
+ ▁AFTER 266
268
+ PER 267
269
+ ▁AGAIN 268
270
+ HO 269
271
+ SH 270
272
+ ▁UPON 271
273
+ ▁DI 272
274
+ ▁HAND 273
275
+ ▁COM 274
276
+ IST 275
277
+ TURE 276
278
+ ▁STA 277
279
+ ▁THEN 278
280
+ ▁SHOULD 279
281
+ ▁GA 280
282
+ OUS 281
283
+ OUR 282
284
+ ▁WELL 283
285
+ ▁ONLY 284
286
+ MAN 285
287
+ ▁GOOD 286
288
+ ▁TWO 287
289
+ ▁MAR 288
290
+ ▁SAY 289
291
+ ▁HU 290
292
+ TING 291
293
+ ▁OUR 292
294
+ RESS 293
295
+ ▁DOWN 294
296
+ IOUS 295
297
+ ▁BEFORE 296
298
+ ▁DA 297
299
+ ▁NA 298
300
+ QUI 299
301
+ ▁MADE 300
302
+ ▁EVERY 301
303
+ ▁OLD 302
304
+ ▁EVEN 303
305
+ IG 304
306
+ ▁COME 305
307
+ ▁GRA 306
308
+ ▁RI 307
309
+ ▁LONG 308
310
+ OT 309
311
+ SIDE 310
312
+ WARD 311
313
+ ▁FO 312
314
+ ▁WHERE 313
315
+ MO 314
316
+ LESS 315
317
+ ▁SC 316
318
+ ▁MUST 317
319
+ ▁NEVER 318
320
+ ▁HOW 319
321
+ ▁CAME 320
322
+ ▁SUCH 321
323
+ ▁RU 322
324
+ ▁TAKE 323
325
+ ▁WO 324
326
+ ▁CAR 325
327
+ UM 326
328
+ AK 327
329
+ ▁THINK 328
330
+ ▁MUCH 329
331
+ ▁MISTER 330
332
+ ▁MAY 331
333
+ ▁JO 332
334
+ ▁WAY 333
335
+ ▁COMP 334
336
+ ▁THOUGHT 335
337
+ ▁STO 336
338
+ ▁MEN 337
339
+ ▁BACK 338
340
+ ▁DON 339
341
+ J 340
342
+ ▁LET 341
343
+ ▁TRA 342
344
+ ▁FIRST 343
345
+ ▁JUST 344
346
+ ▁VA 345
347
+ ▁OWN 346
348
+ ▁PLA 347
349
+ ▁MAKE 348
350
+ ATED 349
351
+ ▁HIMSELF 350
352
+ ▁WENT 351
353
+ ▁PI 352
354
+ GG 353
355
+ RING 354
356
+ ▁DU 355
357
+ ▁MIGHT 356
358
+ ▁PART 357
359
+ ▁GIVE 358
360
+ ▁IMP 359
361
+ ▁BU 360
362
+ ▁PER 361
363
+ ▁PLACE 362
364
+ ▁HOUSE 363
365
+ ▁THROUGH 364
366
+ IAN 365
367
+ ▁SW 366
368
+ ▁UNDER 367
369
+ QUE 368
370
+ ▁AWAY 369
371
+ ▁LOVE 370
372
+ QUA 371
373
+ ▁LIFE 372
374
+ ▁GET 373
375
+ ▁WITHOUT 374
376
+ ▁PASS 375
377
+ ▁TURN 376
378
+ IGN 377
379
+ ▁HEAD 378
380
+ ▁MOST 379
381
+ ▁THOSE 380
382
+ ▁SHALL 381
383
+ ▁EYES 382
384
+ ▁COL 383
385
+ ▁STILL 384
386
+ ▁NIGHT 385
387
+ ▁NOTHING 386
388
+ ITION 387
389
+ HA 388
390
+ ▁TELL 389
391
+ ▁WORK 390
392
+ ▁LAST 391
393
+ ▁NEW 392
394
+ ▁FACE 393
395
+ ▁HI 394
396
+ ▁WORD 395
397
+ ▁FOUND 396
398
+ ▁COUNT 397
399
+ ▁OB 398
400
+ ▁WHILE 399
401
+ ▁SHA 400
402
+ ▁MEAN 401
403
+ ▁SAW 402
404
+ ▁PEOPLE 403
405
+ ▁FRIEND 404
406
+ ▁THREE 405
407
+ ▁ROOM 406
408
+ ▁SAME 407
409
+ ▁THOUGH 408
410
+ ▁RIGHT 409
411
+ ▁CHILD 410
412
+ ▁FATHER 411
413
+ ▁ANOTHER 412
414
+ ▁HEART 413
415
+ ▁WANT 414
416
+ ▁TOOK 415
417
+ OOK 416
418
+ ▁LIGHT 417
419
+ ▁MISSUS 418
420
+ ▁OPEN 419
421
+ ▁JU 420
422
+ ▁ASKED 421
423
+ PORT 422
424
+ ▁LEFT 423
425
+ ▁JA 424
426
+ ▁WORLD 425
427
+ ▁HOME 426
428
+ ▁WHY 427
429
+ ▁ALWAYS 428
430
+ ▁ANSWER 429
431
+ ▁SEEMED 430
432
+ ▁SOMETHING 431
433
+ ▁GIRL 432
434
+ ▁BECAUSE 433
435
+ ▁NAME 434
436
+ ▁TOLD 435
437
+ ▁NI 436
438
+ ▁HIGH 437
439
+ IZE 438
440
+ ▁WOMAN 439
441
+ ▁FOLLOW 440
442
+ ▁RETURN 441
443
+ ▁KNEW 442
444
+ ▁EACH 443
445
+ ▁KIND 444
446
+ ▁JE 445
447
+ ▁ACT 446
448
+ ▁LU 447
449
+ ▁CERTAIN 448
450
+ ▁YEARS 449
451
+ ▁QUITE 450
452
+ ▁APPEAR 451
453
+ ▁BETTER 452
454
+ ▁HALF 453
455
+ ▁PRESENT 454
456
+ ▁PRINCE 455
457
+ SHIP 456
458
+ ▁ALSO 457
459
+ ▁BEGAN 458
460
+ ▁HAVING 459
461
+ ▁ENOUGH 460
462
+ ▁PERSON 461
463
+ ▁LADY 462
464
+ ▁WHITE 463
465
+ ▁COURSE 464
466
+ ▁VOICE 465
467
+ ▁SPEAK 466
468
+ ▁POWER 467
469
+ ▁MORNING 468
470
+ ▁BETWEEN 469
471
+ ▁AMONG 470
472
+ ▁KEEP 471
473
+ ▁WALK 472
474
+ ▁MATTER 473
475
+ ▁TEA 474
476
+ ▁BELIEVE 475
477
+ ▁SMALL 476
478
+ ▁TALK 477
479
+ ▁FELT 478
480
+ ▁HORSE 479
481
+ ▁MYSELF 480
482
+ ▁SIX 481
483
+ ▁HOWEVER 482
484
+ ▁FULL 483
485
+ ▁HERSELF 484
486
+ ▁POINT 485
487
+ ▁STOOD 486
488
+ ▁HUNDRED 487
489
+ ▁ALMOST 488
490
+ ▁SINCE 489
491
+ ▁LARGE 490
492
+ ▁LEAVE 491
493
+ ▁PERHAPS 492
494
+ ▁DARK 493
495
+ ▁SUDDEN 494
496
+ ▁REPLIED 495
497
+ ▁ANYTHING 496
498
+ ▁WONDER 497
499
+ ▁UNTIL 498
500
+ Q 499
501
+ #0 500
502
+ #1 501
decoding_results/ctc-greedy-search/errs-test-clean-epoch-50-avg-24-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-greedy-search/errs-test-other-epoch-50-avg-24-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-greedy-search/log-decode-epoch-50-avg-24-use-averaged-model-2024-09-26-10-19-26 ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2024-09-26 10:19:26,383 INFO [ctc_decode_with_stats.py:784] Decoding started
2
+ 2024-09-26 10:19:26,384 INFO [ctc_decode_with_stats.py:790] Device: cuda:0
3
+ 2024-09-26 10:19:26,384 INFO [ctc_decode_with_stats.py:791] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'ignore_id': -1, 'label_smoothing': 0.1, 'warm_step': 2000, 'env_info': {'k2-version': '1.24.4', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '44a9d5682af9fd3ef77074777e15278ec6d390eb', 'k2-git-date': 'Wed Sep 27 11:22:55 2023', 'lhotse-version': '1.17.0.dev+git.ccfc5b2c.dirty', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'cr-ctc', 'icefall-git-sha1': 'a6eead6c-clean', 'icefall-git-date': 'Mon Sep 9 10:10:08 2024', 'icefall-path': '/star-zw/workspace/zipformer/icefall_cr_ctc', 'k2-path': '/star-zw/workspace/k2/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-zw/workspace/lhotse/lhotse/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-5-0904174858-644c565fdb-d6n2c', 'IP address': '10.30.46.238'}, 'frame_shift_ms': 10, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 50, 'iter': 0, 'avg': 24, 'use_averaged_model': True, 'exp_dir': PosixPath('zipformer/exp-cr-loss-scale-0.2-time-mask-ratio-2.5-scaled-masked-1-4'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'lang_dir': PosixPath('data/lang_bpe_500'), 'context_size': 2, 'decoding_method': 'ctc-greedy-search', 'num_paths': 100, 'nbest_scale': 1.0, 'hlg_scale': 0.6, 'lm_dir': PosixPath('data/lm'), 'num_encoder_layers': '2,2,3,4,3,2', 'downsampling_factor': '1,2,4,8,4,2', 'feedforward_dim': '512,768,1024,1536,1024,768', 'num_heads': '4,4,4,8,4,4', 'encoder_dim': '192,256,384,512,384,256', 'query_head_dim': '32', 'value_head_dim': '12', 'pos_head_dim': '4', 'pos_dim': 48, 'encoder_unmasked_dim': '192,192,256,256,256,192', 'cnn_module_kernel': '31,31,15,15,15,31', 'decoder_dim': 512, 'joiner_dim': 512, 'attention_decoder_dim': 512, 'attention_decoder_num_layers': 6, 'attention_decoder_attention_dim': 512, 'attention_decoder_num_heads': 8, 'attention_decoder_feedforward_dim': 2048, 'causal': False, 'chunk_size': '16,32,64,-1', 'left_context_frames': '64,128,256,-1', 'use_transducer': False, 'use_ctc': True, 'use_attention_decoder': False, 'use_cr_ctc': True, 'full_libri': True, 'mini_libri': False, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 300, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'input_strategy': 'PrecomputedFeatures', 'res_dir': PosixPath('zipformer/exp-cr-loss-scale-0.2-time-mask-ratio-2.5-scaled-masked-1-4/ctc-greedy-search'), 'suffix': 'epoch-50-avg-24-use-averaged-model'}
4
+ 2024-09-26 10:19:26,734 INFO [lexicon.py:168] Loading pre-compiled data/lang_bpe_500/Linv.pt
5
+ 2024-09-26 10:19:31,369 INFO [ctc_decode_with_stats.py:876] About to create model
6
+ 2024-09-26 10:19:31,995 INFO [ctc_decode_with_stats.py:943] Calculating the averaged model over epoch range from 26 (excluded) to 50
7
+ 2024-09-26 10:19:34,611 INFO [ctc_decode_with_stats.py:960] Number of model parameters: 64250603
8
+ 2024-09-26 10:19:34,611 INFO [asr_datamodule.py:467] About to get test-clean cuts
9
+ 2024-09-26 10:19:34,748 INFO [asr_datamodule.py:474] About to get test-other cuts
10
+ 2024-09-26 10:19:35,471 INFO [ctc_decode_with_stats.py:689] batch 0/?, cuts processed until now is 21
11
+ 2024-09-26 10:19:36,831 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([5.6097, 4.6140, 5.3613, 5.0853], device='cuda:0')
12
+ 2024-09-26 10:19:45,624 INFO [ctc_decode_with_stats.py:712] The transcripts are stored in zipformer/exp-cr-loss-scale-0.2-time-mask-ratio-2.5-scaled-masked-1-4/ctc-greedy-search/recogs-test-clean-epoch-50-avg-24-use-averaged-model.txt
13
+ 2024-09-26 10:19:45,887 INFO [utils.py:657] [test-clean-ctc-greedy-search] %WER 2.12% [1116 / 52576, 113 ins, 85 del, 918 sub ]
14
+ 2024-09-26 10:19:46,101 INFO [ctc_decode_with_stats.py:721] Wrote detailed error stats to zipformer/exp-cr-loss-scale-0.2-time-mask-ratio-2.5-scaled-masked-1-4/ctc-greedy-search/errs-test-clean-epoch-50-avg-24-use-averaged-model.txt
15
+ 2024-09-26 10:19:46,106 INFO [ctc_decode_with_stats.py:735]
16
+ For test-clean, WER of different settings are:
17
+ ctc-greedy-search 2.12 best for test-clean
18
+
19
+ 2024-09-26 10:19:46,589 INFO [ctc_decode_with_stats.py:689] batch 0/?, cuts processed until now is 26
20
+ 2024-09-26 10:19:51,927 INFO [zipformer.py:1858] name=None, attn_weights_entropy = tensor([3.3742, 3.0918, 2.6845, 2.9870], device='cuda:0')
21
+ 2024-09-26 10:19:56,892 INFO [ctc_decode_with_stats.py:712] The transcripts are stored in zipformer/exp-cr-loss-scale-0.2-time-mask-ratio-2.5-scaled-masked-1-4/ctc-greedy-search/recogs-test-other-epoch-50-avg-24-use-averaged-model.txt
22
+ 2024-09-26 10:19:57,025 INFO [utils.py:657] [test-other-ctc-greedy-search] %WER 4.62% [2416 / 52343, 235 ins, 197 del, 1984 sub ]
23
+ 2024-09-26 10:19:57,306 INFO [ctc_decode_with_stats.py:721] Wrote detailed error stats to zipformer/exp-cr-loss-scale-0.2-time-mask-ratio-2.5-scaled-masked-1-4/ctc-greedy-search/errs-test-other-epoch-50-avg-24-use-averaged-model.txt
24
+ 2024-09-26 10:19:57,312 INFO [ctc_decode_with_stats.py:735]
25
+ For test-other, WER of different settings are:
26
+ ctc-greedy-search 4.62 best for test-other
27
+
28
+ 2024-09-26 10:19:57,313 INFO [ctc_decode_with_stats.py:1000] Averaged non-blank duration=1.284059427189012
29
+ 2024-09-26 10:19:57,317 INFO [ctc_decode_with_stats.py:1003] Averaged non-blank probs=0.8942277432591206
30
+ 2024-09-26 10:19:57,323 INFO [ctc_decode_with_stats.py:1006] Averaged blank probs=0.9419012471026017
31
+ 2024-09-26 10:19:57,323 INFO [ctc_decode_with_stats.py:1009] Done!
decoding_results/ctc-greedy-search/recogs-test-clean-epoch-50-avg-24-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-greedy-search/recogs-test-other-epoch-50-avg-24-use-averaged-model.txt ADDED
The diff for this file is too large to render. See raw diff
 
decoding_results/ctc-greedy-search/wer-summary-test-clean-epoch-50-avg-24-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ ctc-greedy-search 2.12
decoding_results/ctc-greedy-search/wer-summary-test-other-epoch-50-avg-24-use-averaged-model.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ settings WER
2
+ ctc-greedy-search 4.62
exp/decode.sh ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export CUDA_VISIBLE_DEVICES="0"
2
+ ./zipformer/ctc_decode.py \
3
+ --epoch 50 \
4
+ --avg 24 \
5
+ --exp-dir zipformer/exp \
6
+ --use-cr-ctc 1 \
7
+ --use-ctc 1 \
8
+ --use-transducer 0 \
9
+ --use-attention-decoder 0 \
10
+ --max-duration 600 \
11
+ --decoding-method ctc-greedy-search
exp/epoch-50.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ee8f3d4c374e465ab7619491211b5c8bc5c4171f1d7faacc02531c2aff81895
3
+ size 1028983849
exp/export.sh ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ./zipformer/export.py \
2
+ --exp-dir zipformer/exp \
3
+ --use-cr-ctc 1 \
4
+ --use-ctc 1 \
5
+ --use-transducer 0 \
6
+ --use-attention-decoder 0 \
7
+ --tokens data/lang_bpe_500/tokens.txt \
8
+ --epoch 50 \
9
+ --avg 24
10
+
exp/log/log-train-2024-09-22-10-50-57-0 ADDED
The diff for this file is too large to render. See raw diff
 
exp/log/log-train-2024-09-22-10-50-57-1 ADDED
The diff for this file is too large to render. See raw diff
 
exp/log/log-train-2024-09-22-10-50-57-2 ADDED
The diff for this file is too large to render. See raw diff
 
exp/log/log-train-2024-09-22-10-50-57-3 ADDED
The diff for this file is too large to render. See raw diff
 
exp/pretrained.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcc69d680ce41e691ae458b1be4ff37b8330339310a356fcdf6a89228d1e46e7
3
+ size 257406087
exp/tensorboard/events.out.tfevents.1726973457.de-74279-k2-train-7-0905180047-6d6678bc6f-8cwvw.2388799.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6986f1a061216b519b786e8d16f7ee86280b6e7f9d6082c498ac0abc8fd10090
3
+ size 1830904
exp/train.sh ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export CUDA_VISIBLE_DEVICES="0,1,2,3"
2
+ ./zipformer/train.py \
3
+ --world-size 4 \
4
+ --num-epochs 50 \
5
+ --start-epoch 1 \
6
+ --use-fp16 1 \
7
+ --exp-dir zipformer/exp \
8
+ --use-cr-ctc 1 \
9
+ --use-ctc 1 \
10
+ --use-transducer 0 \
11
+ --use-attention-decoder 0 \
12
+ --enable-spec-aug 0 \
13
+ --cr-loss-scale 0.2 \
14
+ --time-mask-ratio 2.5 \
15
+ --full-libri 1 \
16
+ --max-duration 700 \
17
+ --master-port 12345