ZennyKenny
commited on
Commit
•
aec8a4d
1
Parent(s):
90ad348
first-commit
Browse files- README.md +6 -0
- training-notebook.ipynb +296 -0
README.md
CHANGED
@@ -1,3 +1,9 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# UNet2DModel-NatalieDiffusion
|
6 |
+
|
7 |
+
## Model Summary and Intended Use
|
8 |
+
|
9 |
+
NatalieDiffusion is a finetune of [UNet2DModel](https://huggingface.co/docs/diffusers/v0.26.3/en/api/models/unet2d#diffusers.UNet2DModel) to aid a [particular graphic artist](https://www.behance.net/nataliKav) in quickly generating meaningful mock-ups and similar draft content for her work on an ongoing project.
|
training-notebook.ipynb
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "9c81b287-de2a-4300-89c5-cd3f0e257ac9",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"data": {
|
13 |
+
"application/vnd.jupyter.widget-view+json": {
|
14 |
+
"model_id": "a9c3b8941bf44248afbcf0fcad6eec25",
|
15 |
+
"version_major": 2,
|
16 |
+
"version_minor": 0
|
17 |
+
},
|
18 |
+
"text/plain": [
|
19 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
"metadata": {},
|
23 |
+
"output_type": "display_data"
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"source": [
|
27 |
+
"from huggingface_hub import notebook_login\n",
|
28 |
+
"\n",
|
29 |
+
"notebook_login()"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 2,
|
35 |
+
"id": "60423896-b419-4568-9c17-56385bf300e7",
|
36 |
+
"metadata": {
|
37 |
+
"tags": []
|
38 |
+
},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"name": "stderr",
|
42 |
+
"output_type": "stream",
|
43 |
+
"text": [
|
44 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mkghamilton\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"data": {
|
49 |
+
"text/plain": [
|
50 |
+
"True"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
"execution_count": 2,
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "execute_result"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"source": [
|
59 |
+
"import wandb\n",
|
60 |
+
"wandb.login()"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": 5,
|
66 |
+
"id": "386b6093-e819-4193-83e9-90619cfbed23",
|
67 |
+
"metadata": {
|
68 |
+
"tags": []
|
69 |
+
},
|
70 |
+
"outputs": [
|
71 |
+
{
|
72 |
+
"data": {
|
73 |
+
"text/html": [
|
74 |
+
"Finishing last run (ID:fwvb2zyo) before initializing another..."
|
75 |
+
],
|
76 |
+
"text/plain": [
|
77 |
+
"<IPython.core.display.HTML object>"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"metadata": {},
|
81 |
+
"output_type": "display_data"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"data": {
|
85 |
+
"application/vnd.jupyter.widget-view+json": {
|
86 |
+
"model_id": "",
|
87 |
+
"version_major": 2,
|
88 |
+
"version_minor": 0
|
89 |
+
},
|
90 |
+
"text/plain": [
|
91 |
+
"VBox(children=(Label(value='0.010 MB of 0.010 MB uploaded\\r'), FloatProgress(value=1.0, max=1.0)))"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
"metadata": {},
|
95 |
+
"output_type": "display_data"
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"data": {
|
99 |
+
"text/html": [
|
100 |
+
" View run <strong style=\"color:#cdcd00\">fancy-jazz-1</strong> at: <a href='https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion/runs/fwvb2zyo' target=\"_blank\">https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion/runs/fwvb2zyo</a><br/>Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)"
|
101 |
+
],
|
102 |
+
"text/plain": [
|
103 |
+
"<IPython.core.display.HTML object>"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
"metadata": {},
|
107 |
+
"output_type": "display_data"
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"data": {
|
111 |
+
"text/html": [
|
112 |
+
"Find logs at: <code>./wandb/run-20240305_211104-fwvb2zyo/logs</code>"
|
113 |
+
],
|
114 |
+
"text/plain": [
|
115 |
+
"<IPython.core.display.HTML object>"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"metadata": {},
|
119 |
+
"output_type": "display_data"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"data": {
|
123 |
+
"text/html": [
|
124 |
+
"Successfully finished last run (ID:fwvb2zyo). Initializing new run:<br/>"
|
125 |
+
],
|
126 |
+
"text/plain": [
|
127 |
+
"<IPython.core.display.HTML object>"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
"metadata": {},
|
131 |
+
"output_type": "display_data"
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"data": {
|
135 |
+
"application/vnd.jupyter.widget-view+json": {
|
136 |
+
"model_id": "a75bb6ae8d9846e4a6a9050a529f914e",
|
137 |
+
"version_major": 2,
|
138 |
+
"version_minor": 0
|
139 |
+
},
|
140 |
+
"text/plain": [
|
141 |
+
"VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.011112306700003198, max=1.0…"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"metadata": {},
|
145 |
+
"output_type": "display_data"
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"data": {
|
149 |
+
"text/html": [
|
150 |
+
"Tracking run with wandb version 0.16.3"
|
151 |
+
],
|
152 |
+
"text/plain": [
|
153 |
+
"<IPython.core.display.HTML object>"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"metadata": {},
|
157 |
+
"output_type": "display_data"
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"text/html": [
|
162 |
+
"Run data is saved locally in <code>/home/studio-lab-user/wandb/run-20240305_211140-1lv0cpao</code>"
|
163 |
+
],
|
164 |
+
"text/plain": [
|
165 |
+
"<IPython.core.display.HTML object>"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
"metadata": {},
|
169 |
+
"output_type": "display_data"
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"data": {
|
173 |
+
"text/html": [
|
174 |
+
"Syncing run <strong><a href='https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion/runs/1lv0cpao' target=\"_blank\">sunny-plant-2</a></strong> to <a href='https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
175 |
+
],
|
176 |
+
"text/plain": [
|
177 |
+
"<IPython.core.display.HTML object>"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"metadata": {},
|
181 |
+
"output_type": "display_data"
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"data": {
|
185 |
+
"text/html": [
|
186 |
+
" View project at <a href='https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion' target=\"_blank\">https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion</a>"
|
187 |
+
],
|
188 |
+
"text/plain": [
|
189 |
+
"<IPython.core.display.HTML object>"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
"metadata": {},
|
193 |
+
"output_type": "display_data"
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"data": {
|
197 |
+
"text/html": [
|
198 |
+
" View run at <a href='https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion/runs/1lv0cpao' target=\"_blank\">https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion/runs/1lv0cpao</a>"
|
199 |
+
],
|
200 |
+
"text/plain": [
|
201 |
+
"<IPython.core.display.HTML object>"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
"metadata": {},
|
205 |
+
"output_type": "display_data"
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"text/html": [
|
210 |
+
"<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/kghamilton/UNet2DModal-NatalieDiffusion/runs/1lv0cpao?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
|
211 |
+
],
|
212 |
+
"text/plain": [
|
213 |
+
"<wandb.sdk.wandb_run.Run at 0x7fdca5300910>"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
"execution_count": 5,
|
217 |
+
"metadata": {},
|
218 |
+
"output_type": "execute_result"
|
219 |
+
}
|
220 |
+
],
|
221 |
+
"source": [
|
222 |
+
"wandb.init(\n",
|
223 |
+
" project=\"UNet2DModal-NatalieDiffusion\",\n",
|
224 |
+
" config={\n",
|
225 |
+
" \"magic\": \"true\",\n",
|
226 |
+
" \"dataset\": \"personal-repo\",\n",
|
227 |
+
" },\n",
|
228 |
+
")"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": 6,
|
234 |
+
"id": "2ee4e1ed-6579-4179-aa8b-80aa4c511385",
|
235 |
+
"metadata": {
|
236 |
+
"tags": []
|
237 |
+
},
|
238 |
+
"outputs": [],
|
239 |
+
"source": [
|
240 |
+
"from dataclasses import dataclass\n",
|
241 |
+
"\n",
|
242 |
+
"@dataclass\n",
|
243 |
+
"class TrainingConfig:\n",
|
244 |
+
" image_size = 128\n",
|
245 |
+
" train_batch_size = 4\n",
|
246 |
+
" eval_batch_size = 16\n",
|
247 |
+
" num_epochs = 50\n",
|
248 |
+
" gradient_accumulation_steps = 1\n",
|
249 |
+
" learning_rate = 1e-4\n",
|
250 |
+
" lr_warmup_steps = 500\n",
|
251 |
+
" save_image_epochs = 10\n",
|
252 |
+
" save_model_epochs = 30\n",
|
253 |
+
" mixed_precision = \"fp16\"\n",
|
254 |
+
" output_dir = \"UNet2DModal-NatalieDiffusion\"\n",
|
255 |
+
"\n",
|
256 |
+
" push_to_hub = True\n",
|
257 |
+
" hub_model_id = \"ZennyKenny/UNet2DModal-NatalieDiffusion\"\n",
|
258 |
+
" hub_private_repo = False\n",
|
259 |
+
" overwrite_output_dir = True # overwrite the old model when re-running the notebook\n",
|
260 |
+
" seed = 0\n",
|
261 |
+
"\n",
|
262 |
+
"\n",
|
263 |
+
"config = TrainingConfig()"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
+
"id": "b6e3aa70-fcdc-4fa4-9e61-fe5788e2ed9c",
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [],
|
272 |
+
"source": []
|
273 |
+
}
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"kernelspec": {
|
277 |
+
"display_name": "default:Python",
|
278 |
+
"language": "python",
|
279 |
+
"name": "conda-env-default-py"
|
280 |
+
},
|
281 |
+
"language_info": {
|
282 |
+
"codemirror_mode": {
|
283 |
+
"name": "ipython",
|
284 |
+
"version": 3
|
285 |
+
},
|
286 |
+
"file_extension": ".py",
|
287 |
+
"mimetype": "text/x-python",
|
288 |
+
"name": "python",
|
289 |
+
"nbconvert_exporter": "python",
|
290 |
+
"pygments_lexer": "ipython3",
|
291 |
+
"version": "3.9.16"
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"nbformat": 4,
|
295 |
+
"nbformat_minor": 5
|
296 |
+
}
|