import decord from decord import VideoReader from decord import cpu import torch import math import einops import torchvision.transforms as transforms def adjust_video_duration(video_tensor, duration, target_fps): current_duration = video_tensor.shape[1] target_duration = duration * target_fps if current_duration > target_duration: video_tensor = video_tensor[:, :target_duration] elif current_duration < target_duration: last_frame = video_tensor[:, -1:] repeat_times = target_duration - current_duration video_tensor = torch.cat((video_tensor, last_frame.repeat(1, repeat_times, 1, 1)), dim=1) return video_tensor def video_read_local(filepath, seek_time=0., duration=-1, target_fps=2): vr = VideoReader(filepath, ctx=cpu(0)) fps = vr.get_avg_fps() if duration > 0: total_frames_to_read = target_fps * duration frame_interval = int(math.ceil(fps / target_fps)) start_frame = int(seek_time * fps) end_frame = start_frame + frame_interval * total_frames_to_read frame_ids = list(range(start_frame, min(end_frame, len(vr)), frame_interval)) else: frame_ids = list(range(0, len(vr), int(math.ceil(fps / target_fps)))) frames = vr.get_batch(frame_ids) frames = torch.from_numpy(frames.asnumpy()).permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W] resize_transform = transforms.Resize((224, 224)) frames = [resize_transform(frame) for frame in frames] video_tensor = torch.stack(frames) video_tensor = einops.rearrange(video_tensor, 't c h w -> c t h w') # [T, C, H, W] -> [C, T, H, W] video_tensor = adjust_video_duration(video_tensor, duration, target_fps) assert video_tensor.shape[1] == duration * target_fps, f"the shape of video_tensor is {video_tensor.shape}" return video_tensor def video_read_global(filepath, seek_time=0., duration=-1, target_fps=2, global_mode='average', global_num_frames=32): vr = VideoReader(filepath, ctx=cpu(0)) fps = vr.get_avg_fps() frame_count = len(vr) if duration > 0: total_frames_to_read = target_fps * duration frame_interval = int(math.ceil(fps / target_fps)) start_frame = int(seek_time * fps) end_frame = start_frame + frame_interval * total_frames_to_read frame_ids = list(range(start_frame, min(end_frame, frame_count), frame_interval)) else: frame_ids = list(range(0, frame_count, int(math.ceil(fps / target_fps)))) local_frames = vr.get_batch(frame_ids) local_frames = torch.from_numpy(local_frames.asnumpy()).permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W] resize_transform = transforms.Resize((224, 224)) local_frames = [resize_transform(frame) for frame in local_frames] local_video_tensor = torch.stack(local_frames) local_video_tensor = einops.rearrange(local_video_tensor, 't c h w -> c t h w') # [T, C, H, W] -> [C, T, H, W] local_video_tensor = adjust_video_duration(local_video_tensor, duration, target_fps) if global_mode=='average': global_frame_ids = torch.linspace(0, frame_count - 1, global_num_frames).long() global_frames = vr.get_batch(global_frame_ids) global_frames = torch.from_numpy(global_frames.asnumpy()).permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W] global_frames = [resize_transform(frame) for frame in global_frames] global_video_tensor = torch.stack(global_frames) global_video_tensor = einops.rearrange(global_video_tensor, 't c h w -> c t h w') # [T, C, H, W] -> [C, T, H, W] assert global_video_tensor.shape[1] == global_num_frames, f"the shape of global_video_tensor is {global_video_tensor.shape}" return local_video_tensor, global_video_tensor