Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#TinyLLaVA
|
2 |
+
|
3 |
+
Here, we introduce TinyLLaVA-Qwen2-0.5B-siglip-so400m-patch14-384-base, which is trained by the TinyLLaVA Factory codebase. For LLM and vision tower, we choose Qwen2-0.5B and siglip-so400m-patch14-384, respectively. The dataset used for training this model is the LLaVA dataset.
|
4 |
+
|
5 |
+
##Usage
|
6 |
+
|
7 |
+
Execute the following test code:
|
8 |
+
```python
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
hf_path = 'Zhang199/TinyLLaVA-Qwen2-0.5B-siglip-so400m-patch14-384-base'
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
|
13 |
+
model.cuda()
|
14 |
+
config = model.config
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
|
16 |
+
prompt="What are these?"
|
17 |
+
image_url="http://images.cocodataset.org/test-stuff2017/000000000001.jpg"
|
18 |
+
output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, tokenizer=tokenizer)
|
19 |
+
|
20 |
+
print('model output:', output_text)
|
21 |
+
print('runing time:', genertaion_time)
|
22 |
+
|
23 |
+
##Result
|