from typing import Dict, List, Any from transformers import Pipeline from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image from io import BytesIO import base64 import json class EndpointHandler(): def __init__(self, path=""): self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda") def __call__(self, data): info=data['inputs'] img=info.pop('image',data) image_bytes=base64.b64decode(img) raw_images = Image.open(BytesIO(image_bytes)) inputs = self.processor(raw_images, return_tensors="pt").to("cuda") out = self.model.generate(**inputs) # print(self.processor.decode(out[0], skip_special_tokens=True)) return {'text':self.processor.decode(out[0], skip_special_tokens=True)} if __name__=="__main__": my_handler=EndpointHandler(path='.') test_payload={"inputs": "/home/ubuntu/guoling/1.png"} test_result=my_handler(test_payload) print(test_result)