File size: 1,952 Bytes
4e9ec30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Zidan_model_output_v8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Zidan_model_output_v8

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5008
- Accuracy: 0.7818

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 248  | 0.9353          | 0.4545   |
| No log        | 2.0   | 496  | 0.8453          | 0.7636   |
| 0.8008        | 3.0   | 744  | 0.9547          | 0.8364   |
| 0.8008        | 4.0   | 992  | 0.9477          | 0.8      |
| 0.3923        | 5.0   | 1240 | 1.2342          | 0.8      |
| 0.3923        | 6.0   | 1488 | 1.5085          | 0.8      |
| 0.1679        | 7.0   | 1736 | 1.2791          | 0.8182   |
| 0.1679        | 8.0   | 1984 | 1.3501          | 0.8182   |
| 0.0693        | 9.0   | 2232 | 1.5200          | 0.7818   |
| 0.0693        | 10.0  | 2480 | 1.5008          | 0.7818   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1