--- license: apache-2.0 datasets: - Skywork/Skywork-Reward-Preference-80K-v0.1 base_model: - Qwen/Qwen2-7B-Instruct --- ## Introduction Con-J-Qwen2-7B (learning the generative ***J***udge using self-generated ***Con***trastive judgments) is an advanced generative judge built on Qwen2-7B-Instruct architecture and dataset Skywork/Skywork-Reward-Preference-80K-v0.1. Con-J-Qwen2-7B is trained from preference data. We prompt the pre-trained Qwen2-7B-Instruct model to generate positive and negative judgments, both supported with rationales in natural language form. Then the self-generated contrastive judgment pairs are used to train the generative judge with Direct Preference Optimization (DPO). By doing this, Con-J learns to act as a generative judge and provides accurate and supprting rationales. ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ZiyiYe/Con-J-Qwen2-7B" model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name) question = "What is the range of the numeric output of a sigmoid node in a neural network?" answer1 = "The output of a sigmoid node is bounded between -1 and 1." answer2 = "The output of a sigmoid node is bounded between 0 and 1." # Format and tokenize the conversations CON_J_PROMPT = """作为一个评价专家,给定一个问题和它的两个可能的回答,请选出哪一个回答在连贯性、准确性、覆盖度和上述定义的整体质量方面最为符合。请用JSON格式输出你的判断, 其中"原因"是你提供的解释,"更好的回答"是整数类型的1或2,例如{{"原因": "你的解释", "更好的回答": 1}}。以下是问题和候选回答的内容: \n问题:{instruction} 回答1:{output_1} 回答2:{output_2}""" user_prompt = CON_J_PROMPT.format(instruction=question, output_1=answer1, output_2=answer2) system_prompt = "" messages = [ {"role": "system", "content": system_prompt,}, {"role": "user", "content": user_prompt}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) prompt = tokenizer([prompt], return_tensors="pt") # Generate judgment for the given prompt with torch.no_grad(): generated_ids = model.generate(prompt.input_ids, do_sample=False, max_new_tokens=2048,) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(prompt.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # response: {"原因": "回答1中的-1是错误的,因为sigmoid函数的实际输出范围是0到1,而不是包括-1。回答2准确地描述了sigmoid函数的输出范围是0到1。",\n "更好的回答": 2} ``` ## Performance
Model Infinity-
Preference
Ultra-
Feedback
PKU-
SafeRLHF
Reward-Bench
Chat Chat-H Safety Reasoning
Llama3.1-8B 59.0 62.9 66.4 80.7 49.8 64.0 68.1
Llama3.1-70B 64.0 71.4 67.6 97.2 70.2 82.8 86.0
Qwen2-7B 59.0 64.5 67.2 91.3 44.8 73.6 69.0
Qwen2.5-72B 70.0 66.0 58.7 86.6 61.4 74.5 90.7
Auto-J 69.0 63.9 66.9 93.0 40.0 65.5 50.5
Prometheus 2 68.0 63.3 63.0 85.5 49.1 77.1 76.5
GPT-4o 75.0 72.2 69.6 95.3 74.3 87.6 86.9
Con-J (ours) 81.0 73.0 68.4 91.3 79.6 88.0 87.1
## Reference ``` @misc{ye2024scalarrewardmodellearning, title={Beyond Scalar Reward Model: Learning Generative Judge from Preference Data}, author={Ziyi Ye and Xiangsheng Li and Qiuchi Li and Qingyao Ai and Yujia Zhou and Wei Shen and Dong Yan and Yiqun Liu}, year={2024}, eprint={2410.03742}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.03742}, } ```