Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,284 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- cerebras/SlimPajama-627B
|
5 |
+
- bigcode/starcoderdata
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
model_creator: TinyLlama
|
9 |
+
model_name: Tinyllama 1.1B Intermediate Step 1431K 3T
|
10 |
+
model_type: tinyllama
|
11 |
+
prompt_template: '{prompt}'
|
12 |
+
|
13 |
+
quantized_by: Znerual
|
14 |
---
|
15 |
+
<div align="center">
|
16 |
+
|
17 |
+
|
18 |
+
# Tinyllama 1.1B Intermediate Step 1431K 3T - AWQ
|
19 |
+
|
20 |
+
## Description
|
21 |
+
|
22 |
+
### About AWQ
|
23 |
+
|
24 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
25 |
+
|
26 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
27 |
+
|
28 |
+
It is supported by:
|
29 |
+
|
30 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
31 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
32 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
33 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
34 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
35 |
+
|
36 |
+
<!-- description end -->
|
37 |
+
<!-- repositories-available start -->
|
38 |
+
|
39 |
+
<!-- README_AWQ.md-provided-files end -->
|
40 |
+
|
41 |
+
<!-- README_AWQ.md-text-generation-webui start -->
|
42 |
+
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
43 |
+
|
44 |
+
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
45 |
+
|
46 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
47 |
+
|
48 |
+
1. Click the **Model tab**.
|
49 |
+
2. Under **Download custom model or LoRA**, enter `Znerual/TinyLlama-1.1B-intermediate-step-1431k-3T-AWQ`.
|
50 |
+
3. Click **Download**.
|
51 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
52 |
+
5. In the top left, click the refresh icon next to **Model**.
|
53 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `TinyLlama-1.1B-intermediate-step-1431k-3T-AWQ`
|
54 |
+
7. Select **Loader: AutoAWQ**.
|
55 |
+
8. Click Load, and the model will load and is now ready for use.
|
56 |
+
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
57 |
+
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
|
58 |
+
<!-- README_AWQ.md-text-generation-webui end -->
|
59 |
+
|
60 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
61 |
+
## Multi-user inference server: vLLM
|
62 |
+
|
63 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
64 |
+
|
65 |
+
- Please ensure you are using vLLM version 0.2 or later.
|
66 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter.
|
67 |
+
|
68 |
+
For example:
|
69 |
+
|
70 |
+
```shell
|
71 |
+
python3 -m vllm.entrypoints.api_server --model Znerual/TinyLlama-1.1B-intermediate-step-1431k-3T-AWQ --quantization awq --dtype auto
|
72 |
+
```
|
73 |
+
|
74 |
+
- When using vLLM from Python code, again set `quantization=awq`.
|
75 |
+
|
76 |
+
For example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
from vllm import LLM, SamplingParams
|
80 |
+
|
81 |
+
prompts = [
|
82 |
+
"Tell me about AI",
|
83 |
+
"Write a story about llamas",
|
84 |
+
"What is 291 - 150?",
|
85 |
+
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
|
86 |
+
]
|
87 |
+
prompt_template=f'''[INST] {prompt} [/INST]
|
88 |
+
'''
|
89 |
+
|
90 |
+
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
|
91 |
+
|
92 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
93 |
+
|
94 |
+
llm = LLM(model="Znerual/TinyLlama-1.1B-intermediate-step-1431k-3T-AWQ", quantization="awq", dtype="auto")
|
95 |
+
|
96 |
+
outputs = llm.generate(prompts, sampling_params)
|
97 |
+
|
98 |
+
# Print the outputs.
|
99 |
+
for output in outputs:
|
100 |
+
prompt = output.prompt
|
101 |
+
generated_text = output.outputs[0].text
|
102 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
103 |
+
```
|
104 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
105 |
+
|
106 |
+
<!-- README_AWQ.md-use-from-tgi start -->
|
107 |
+
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
|
108 |
+
|
109 |
+
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
|
110 |
+
|
111 |
+
Example Docker parameters:
|
112 |
+
|
113 |
+
```shell
|
114 |
+
--model-id Znerual/TinyLlama-1.1B-intermediate-step-1431k-3T-AWQ --port 3000 --quantize awq --max-input-length 1902 --max-total-tokens 2048 --max-batch-prefill-tokens 2048
|
115 |
+
```
|
116 |
+
|
117 |
+
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
|
118 |
+
|
119 |
+
```shell
|
120 |
+
pip3 install huggingface-hub
|
121 |
+
```
|
122 |
+
|
123 |
+
```python
|
124 |
+
from huggingface_hub import InferenceClient
|
125 |
+
|
126 |
+
endpoint_url = "https://your-endpoint-url-here"
|
127 |
+
|
128 |
+
prompt = "Tell me about AI"
|
129 |
+
prompt_template=f'''[INST] {prompt} [/INST]
|
130 |
+
'''
|
131 |
+
|
132 |
+
client = InferenceClient(endpoint_url)
|
133 |
+
response = client.text_generation(prompt,
|
134 |
+
max_new_tokens=128,
|
135 |
+
do_sample=True,
|
136 |
+
temperature=0.7,
|
137 |
+
top_p=0.95,
|
138 |
+
top_k=40,
|
139 |
+
repetition_penalty=1.1)
|
140 |
+
|
141 |
+
print(f"Model output: ", response)
|
142 |
+
```
|
143 |
+
<!-- README_AWQ.md-use-from-tgi end -->
|
144 |
+
|
145 |
+
<!-- README_AWQ.md-use-from-python start -->
|
146 |
+
## Inference from Python code using Transformers
|
147 |
+
|
148 |
+
### Install the necessary packages
|
149 |
+
|
150 |
+
- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
|
151 |
+
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
|
152 |
+
|
153 |
+
```shell
|
154 |
+
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
|
155 |
+
```
|
156 |
+
|
157 |
+
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
|
158 |
+
|
159 |
+
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
|
160 |
+
|
161 |
+
```shell
|
162 |
+
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
|
163 |
+
```
|
164 |
+
|
165 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
166 |
+
|
167 |
+
```shell
|
168 |
+
pip3 uninstall -y autoawq
|
169 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
170 |
+
cd AutoAWQ
|
171 |
+
pip3 install .
|
172 |
+
```
|
173 |
+
|
174 |
+
### Transformers example code (requires Transformers 4.35.0 and later)
|
175 |
+
|
176 |
+
```python
|
177 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
178 |
+
|
179 |
+
model_name_or_path = "Znerual/TinyLlama-1.1B-intermediate-step-1431k-3T-AWQ"
|
180 |
+
|
181 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
182 |
+
model = AutoModelForCausalLM.from_pretrained(
|
183 |
+
model_name_or_path,
|
184 |
+
low_cpu_mem_usage=True,
|
185 |
+
device_map="cuda:0"
|
186 |
+
)
|
187 |
+
|
188 |
+
# Using the text streamer to stream output one token at a time
|
189 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
190 |
+
|
191 |
+
prompt = "Tell me about AI"
|
192 |
+
prompt_template=f'''[INST] {prompt} [/INST]
|
193 |
+
'''
|
194 |
+
|
195 |
+
# Convert prompt to tokens
|
196 |
+
tokens = tokenizer(
|
197 |
+
prompt_template,
|
198 |
+
return_tensors='pt'
|
199 |
+
).input_ids.cuda()
|
200 |
+
|
201 |
+
generation_params = {
|
202 |
+
"do_sample": True,
|
203 |
+
"temperature": 0.7,
|
204 |
+
"top_p": 0.95,
|
205 |
+
"top_k": 40,
|
206 |
+
"max_new_tokens": 512,
|
207 |
+
"repetition_penalty": 1.1
|
208 |
+
}
|
209 |
+
|
210 |
+
# Generate streamed output, visible one token at a time
|
211 |
+
generation_output = model.generate(
|
212 |
+
tokens,
|
213 |
+
streamer=streamer,
|
214 |
+
**generation_params
|
215 |
+
)
|
216 |
+
|
217 |
+
# Generation without a streamer, which will include the prompt in the output
|
218 |
+
generation_output = model.generate(
|
219 |
+
tokens,
|
220 |
+
**generation_params
|
221 |
+
)
|
222 |
+
|
223 |
+
# Get the tokens from the output, decode them, print them
|
224 |
+
token_output = generation_output[0]
|
225 |
+
text_output = tokenizer.decode(token_output)
|
226 |
+
print("model.generate output: ", text_output)
|
227 |
+
|
228 |
+
# Inference is also possible via Transformers' pipeline
|
229 |
+
from transformers import pipeline
|
230 |
+
|
231 |
+
pipe = pipeline(
|
232 |
+
"text-generation",
|
233 |
+
model=model,
|
234 |
+
tokenizer=tokenizer,
|
235 |
+
**generation_params
|
236 |
+
)
|
237 |
+
|
238 |
+
pipe_output = pipe(prompt_template)[0]['generated_text']
|
239 |
+
print("pipeline output: ", pipe_output)
|
240 |
+
|
241 |
+
```
|
242 |
+
<!-- README_AWQ.md-use-from-python end -->
|
243 |
+
|
244 |
+
<!-- README_AWQ.md-compatibility start -->
|
245 |
+
## Compatibility
|
246 |
+
|
247 |
+
The files provided are tested to work with:
|
248 |
+
|
249 |
+
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
|
250 |
+
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
|
251 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
|
252 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
|
253 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
|
254 |
+
|
255 |
+
|
256 |
+
# Original model card: Tinyllama 1.1B
|
257 |
+
|
258 |
+
</div>
|
259 |
+
|
260 |
+
https://github.com/jzhang38/TinyLlama
|
261 |
+
|
262 |
+
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
|
263 |
+
|
264 |
+
<div align="center">
|
265 |
+
<img src="./TinyLlama_logo.png" width="300"/>
|
266 |
+
</div>
|
267 |
+
|
268 |
+
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
|
269 |
+
|
270 |
+
#### This Collection
|
271 |
+
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
|
272 |
+
|
273 |
+
#### Eval
|
274 |
+
|
275 |
+
| Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
|
276 |
+
|-------------------------------------------|-----------------|-----------|------|------------|-------|-------|-------|------|-----|
|
277 |
+
| Pythia-1.0B | 300B | 47.16 | 31.40| 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
|
278 |
+
| TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80| 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11|
|
279 |
+
| TinyLlama-1.1B-intermediate-step-240k-503b| 503B | 49.56 |31.40 |55.80 |26.54 |48.32 |56.91 |69.42 | 48.28 |
|
280 |
+
| TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
|
281 |
+
| TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
|
282 |
+
| TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
|
283 |
+
| TinyLlama-1.1B-intermediate-step-1195k-2.5T | 2.5T | 58.96 | 34.40 | 58.72 | 31.91 | 56.78 | 63.21 | 73.07 | 53.86|
|
284 |
+
| TinyLlama-1.1B-intermediate-step-1431k-3T | 3T | 59.20 | 36.00 | 59.12 | 30.12 | 55.25 | 57.83 | 73.29 | 52.99|
|