--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: irony_trained_final results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: irony metrics: - name: F1 type: f1 value: 0.6879413493337545 --- # irony_trained_final This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.4770 - F1: 0.6879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.842398023893579e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6852 | 1.0 | 716 | 0.6488 | 0.6530 | | 0.6263 | 2.0 | 1432 | 0.7647 | 0.6511 | | 0.4511 | 3.0 | 2148 | 1.2251 | 0.6764 | | 0.2578 | 4.0 | 2864 | 1.4770 | 0.6879 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3