--- license: apache-2.0 base_model: WinKawaks/vit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: msi-vit-small-pretrain results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6394150417827298 --- # msi-vit-small-pretrain This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.4835 - Accuracy: 0.6394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0897 | 1.0 | 781 | 1.7652 | 0.6574 | | 0.0539 | 2.0 | 1562 | 2.5512 | 0.6017 | | 0.0127 | 3.0 | 2343 | 2.4835 | 0.6394 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0