aaabiao commited on
Commit
1c46159
·
1 Parent(s): b29c48e
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: /gpfs/public/01/models/hf_models/Qwen2.5-7B
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: dag_qwen_sft_v0
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # dag_qwen_sft_v0
18
+
19
+ This model is a fine-tuned version of [/gpfs/public/01/models/hf_models/Qwen2.5-7B](https://huggingface.co//gpfs/public/01/models/hf_models/Qwen2.5-7B) on the DAG_sft_v0 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 128
46
+ - total_eval_batch_size: 64
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.05
50
+ - num_epochs: 2.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.44.2
59
+ - Pytorch 2.4.1+cu121
60
+ - Datasets 2.21.0
61
+ - Tokenizers 0.19.1
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.9937952430196484,
3
+ "total_flos": 3.6089290785072087e+18,
4
+ "train_loss": 0.3119487636316861,
5
+ "train_runtime": 2571.753,
6
+ "train_samples_per_second": 24.051,
7
+ "train_steps_per_second": 0.187
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/gpfs/public/01/models/hf_models/Qwen2.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.44.2",
25
+ "use_cache": false,
26
+ "use_mrope": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.44.2"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37854e61baf2ee8d6ee5125d330b182d8529fabe5b8a1d455c0b0b714ecb5d9
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8cdc90b617a003617bcfd3315fd46156aa1b5dd49c1bd5106ae685cc65d9e09
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a4bd1cbdd432329b190d51fa60e39a72a472a198228a971e90b34aea828223
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c776016651374c06d0e8e4606b68d6304d1be80a1c779fb619a16f9475be4fe2
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.9937952430196484,
3
+ "total_flos": 3.6089290785072087e+18,
4
+ "train_loss": 0.3119487636316861,
5
+ "train_runtime": 2571.753,
6
+ "train_samples_per_second": 24.051,
7
+ "train_steps_per_second": 0.187
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04c620f09efa8f9889b6c331d1d4a5dad9ac6315e6dab56a72993cdc0db75ad3
3
+ size 93396
trainer_state.json ADDED
@@ -0,0 +1,3416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9937952430196484,
5
+ "eval_steps": 500,
6
+ "global_step": 482,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004136504653567736,
13
+ "grad_norm": 8.454320907592773,
14
+ "learning_rate": 4.0000000000000003e-07,
15
+ "loss": 0.4689,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.008273009307135471,
20
+ "grad_norm": 8.755942344665527,
21
+ "learning_rate": 8.000000000000001e-07,
22
+ "loss": 0.4625,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.012409513960703205,
27
+ "grad_norm": 13.382512092590332,
28
+ "learning_rate": 1.2000000000000002e-06,
29
+ "loss": 0.4319,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.016546018614270942,
34
+ "grad_norm": 11.072649955749512,
35
+ "learning_rate": 1.6000000000000001e-06,
36
+ "loss": 0.471,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.020682523267838676,
41
+ "grad_norm": 4.4571709632873535,
42
+ "learning_rate": 2.0000000000000003e-06,
43
+ "loss": 0.4341,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.02481902792140641,
48
+ "grad_norm": 4.237286567687988,
49
+ "learning_rate": 2.4000000000000003e-06,
50
+ "loss": 0.4637,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.028955532574974147,
55
+ "grad_norm": 3.21901535987854,
56
+ "learning_rate": 2.8000000000000003e-06,
57
+ "loss": 0.4598,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.033092037228541885,
62
+ "grad_norm": 2.7905218601226807,
63
+ "learning_rate": 3.2000000000000003e-06,
64
+ "loss": 0.4174,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.03722854188210962,
69
+ "grad_norm": 2.5547449588775635,
70
+ "learning_rate": 3.6000000000000003e-06,
71
+ "loss": 0.4488,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.04136504653567735,
76
+ "grad_norm": 2.075817584991455,
77
+ "learning_rate": 4.000000000000001e-06,
78
+ "loss": 0.4323,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.045501551189245086,
83
+ "grad_norm": 1.1852331161499023,
84
+ "learning_rate": 4.4e-06,
85
+ "loss": 0.404,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.04963805584281282,
90
+ "grad_norm": 1.370549201965332,
91
+ "learning_rate": 4.800000000000001e-06,
92
+ "loss": 0.3687,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.05377456049638056,
97
+ "grad_norm": 0.7430139780044556,
98
+ "learning_rate": 5.2e-06,
99
+ "loss": 0.3812,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.057911065149948295,
104
+ "grad_norm": 0.8032243251800537,
105
+ "learning_rate": 5.600000000000001e-06,
106
+ "loss": 0.373,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.06204756980351603,
111
+ "grad_norm": 2.7111802101135254,
112
+ "learning_rate": 6e-06,
113
+ "loss": 0.371,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.06618407445708377,
118
+ "grad_norm": 0.8430923819541931,
119
+ "learning_rate": 6.4000000000000006e-06,
120
+ "loss": 0.3891,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0703205791106515,
125
+ "grad_norm": 0.6954956650733948,
126
+ "learning_rate": 6.800000000000001e-06,
127
+ "loss": 0.376,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.07445708376421924,
132
+ "grad_norm": 0.7058322429656982,
133
+ "learning_rate": 7.2000000000000005e-06,
134
+ "loss": 0.3958,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.07859358841778696,
139
+ "grad_norm": 0.5975633859634399,
140
+ "learning_rate": 7.600000000000001e-06,
141
+ "loss": 0.3674,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0827300930713547,
146
+ "grad_norm": 0.6905612945556641,
147
+ "learning_rate": 8.000000000000001e-06,
148
+ "loss": 0.3925,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.08686659772492245,
153
+ "grad_norm": 0.6662179827690125,
154
+ "learning_rate": 8.400000000000001e-06,
155
+ "loss": 0.3837,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.09100310237849017,
160
+ "grad_norm": 0.9616004824638367,
161
+ "learning_rate": 8.8e-06,
162
+ "loss": 0.3805,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.09513960703205791,
167
+ "grad_norm": 1.6762669086456299,
168
+ "learning_rate": 9.200000000000002e-06,
169
+ "loss": 0.3661,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.09927611168562564,
174
+ "grad_norm": 3.642876148223877,
175
+ "learning_rate": 9.600000000000001e-06,
176
+ "loss": 0.3723,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.10341261633919338,
181
+ "grad_norm": 22.331893920898438,
182
+ "learning_rate": 1e-05,
183
+ "loss": 0.4012,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.10754912099276112,
188
+ "grad_norm": 4.078958034515381,
189
+ "learning_rate": 9.999881857639567e-06,
190
+ "loss": 0.4019,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.11168562564632885,
195
+ "grad_norm": 2.163355827331543,
196
+ "learning_rate": 9.999527436141312e-06,
197
+ "loss": 0.4275,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.11582213029989659,
202
+ "grad_norm": 1.0988469123840332,
203
+ "learning_rate": 9.998936752254111e-06,
204
+ "loss": 0.3885,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.11995863495346432,
209
+ "grad_norm": 1.299137830734253,
210
+ "learning_rate": 9.998109833891883e-06,
211
+ "loss": 0.388,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.12409513960703206,
216
+ "grad_norm": 5.283950328826904,
217
+ "learning_rate": 9.997046720132262e-06,
218
+ "loss": 0.4219,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.1282316442605998,
223
+ "grad_norm": 0.8062543869018555,
224
+ "learning_rate": 9.995747461214752e-06,
225
+ "loss": 0.3589,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.13236814891416754,
230
+ "grad_norm": 0.7722073793411255,
231
+ "learning_rate": 9.994212118538364e-06,
232
+ "loss": 0.3486,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.13650465356773525,
237
+ "grad_norm": 0.762801468372345,
238
+ "learning_rate": 9.992440764658697e-06,
239
+ "loss": 0.3676,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.140641158221303,
244
+ "grad_norm": 0.745180606842041,
245
+ "learning_rate": 9.990433483284527e-06,
246
+ "loss": 0.4115,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.14477766287487073,
251
+ "grad_norm": 0.8027282953262329,
252
+ "learning_rate": 9.988190369273834e-06,
253
+ "loss": 0.4001,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.14891416752843847,
258
+ "grad_norm": 0.6682556867599487,
259
+ "learning_rate": 9.985711528629332e-06,
260
+ "loss": 0.3637,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.15305067218200621,
265
+ "grad_norm": 0.6948946714401245,
266
+ "learning_rate": 9.982997078493457e-06,
267
+ "loss": 0.3488,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.15718717683557393,
272
+ "grad_norm": 0.7381304502487183,
273
+ "learning_rate": 9.980047147142824e-06,
274
+ "loss": 0.3777,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.16132368148914167,
279
+ "grad_norm": 0.6775998473167419,
280
+ "learning_rate": 9.976861873982177e-06,
281
+ "loss": 0.3904,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.1654601861427094,
286
+ "grad_norm": 0.8822210431098938,
287
+ "learning_rate": 9.973441409537795e-06,
288
+ "loss": 0.383,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.16959669079627715,
293
+ "grad_norm": 0.657383382320404,
294
+ "learning_rate": 9.969785915450368e-06,
295
+ "loss": 0.3882,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1737331954498449,
300
+ "grad_norm": 0.6214635372161865,
301
+ "learning_rate": 9.965895564467381e-06,
302
+ "loss": 0.3922,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1778697001034126,
307
+ "grad_norm": 0.6440220475196838,
308
+ "learning_rate": 9.961770540434931e-06,
309
+ "loss": 0.3796,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.18200620475698034,
314
+ "grad_norm": 0.6130467653274536,
315
+ "learning_rate": 9.95741103828905e-06,
316
+ "loss": 0.3562,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.18614270941054809,
321
+ "grad_norm": 0.6214406490325928,
322
+ "learning_rate": 9.952817264046486e-06,
323
+ "loss": 0.396,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.19027921406411583,
328
+ "grad_norm": 0.5837990641593933,
329
+ "learning_rate": 9.947989434794973e-06,
330
+ "loss": 0.3455,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.19441571871768357,
335
+ "grad_norm": 0.6432331800460815,
336
+ "learning_rate": 9.942927778682968e-06,
337
+ "loss": 0.3791,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.19855222337125128,
342
+ "grad_norm": 0.6208926439285278,
343
+ "learning_rate": 9.937632534908872e-06,
344
+ "loss": 0.4059,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.20268872802481902,
349
+ "grad_norm": 0.6121624112129211,
350
+ "learning_rate": 9.932103953709724e-06,
351
+ "loss": 0.3693,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.20682523267838676,
356
+ "grad_norm": 0.5415109395980835,
357
+ "learning_rate": 9.926342296349378e-06,
358
+ "loss": 0.3192,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.2109617373319545,
363
+ "grad_norm": 0.5551713109016418,
364
+ "learning_rate": 9.920347835106152e-06,
365
+ "loss": 0.3563,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.21509824198552224,
370
+ "grad_norm": 0.6338883638381958,
371
+ "learning_rate": 9.914120853259968e-06,
372
+ "loss": 0.3917,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.21923474663908996,
377
+ "grad_norm": 0.6104925274848938,
378
+ "learning_rate": 9.90766164507896e-06,
379
+ "loss": 0.3983,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.2233712512926577,
384
+ "grad_norm": 0.592183530330658,
385
+ "learning_rate": 9.900970515805564e-06,
386
+ "loss": 0.341,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.22750775594622544,
391
+ "grad_norm": 0.513282060623169,
392
+ "learning_rate": 9.89404778164211e-06,
393
+ "loss": 0.3581,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.23164426059979318,
398
+ "grad_norm": 0.5831045508384705,
399
+ "learning_rate": 9.886893769735852e-06,
400
+ "loss": 0.3561,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.23578076525336092,
405
+ "grad_norm": 0.5578728914260864,
406
+ "learning_rate": 9.879508818163536e-06,
407
+ "loss": 0.3615,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.23991726990692863,
412
+ "grad_norm": 0.6278296709060669,
413
+ "learning_rate": 9.871893275915408e-06,
414
+ "loss": 0.3675,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.24405377456049637,
419
+ "grad_norm": 0.7174540758132935,
420
+ "learning_rate": 9.864047502878717e-06,
421
+ "loss": 0.3633,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.2481902792140641,
426
+ "grad_norm": 0.5807657837867737,
427
+ "learning_rate": 9.855971869820726e-06,
428
+ "loss": 0.3567,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.25232678386763185,
433
+ "grad_norm": 0.5903241038322449,
434
+ "learning_rate": 9.847666758371175e-06,
435
+ "loss": 0.3864,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.2564632885211996,
440
+ "grad_norm": 0.5542154312133789,
441
+ "learning_rate": 9.83913256100425e-06,
442
+ "loss": 0.3763,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.26059979317476734,
447
+ "grad_norm": 0.6011348962783813,
448
+ "learning_rate": 9.830369681020043e-06,
449
+ "loss": 0.363,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2647362978283351,
454
+ "grad_norm": 0.5147583484649658,
455
+ "learning_rate": 9.821378532525479e-06,
456
+ "loss": 0.3634,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.2688728024819028,
461
+ "grad_norm": 0.5299031734466553,
462
+ "learning_rate": 9.812159540414766e-06,
463
+ "loss": 0.3703,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2730093071354705,
468
+ "grad_norm": 0.525841474533081,
469
+ "learning_rate": 9.802713140349294e-06,
470
+ "loss": 0.3592,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.27714581178903824,
475
+ "grad_norm": 0.47922268509864807,
476
+ "learning_rate": 9.79303977873707e-06,
477
+ "loss": 0.3484,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.281282316442606,
482
+ "grad_norm": 0.5722537636756897,
483
+ "learning_rate": 9.783139912711597e-06,
484
+ "loss": 0.3435,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.2854188210961737,
489
+ "grad_norm": 0.603398859500885,
490
+ "learning_rate": 9.773014010110298e-06,
491
+ "loss": 0.3995,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.28955532574974147,
496
+ "grad_norm": 0.529694139957428,
497
+ "learning_rate": 9.76266254945238e-06,
498
+ "loss": 0.3934,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2936918304033092,
503
+ "grad_norm": 0.5173729062080383,
504
+ "learning_rate": 9.752086019916246e-06,
505
+ "loss": 0.3618,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.29782833505687695,
510
+ "grad_norm": 0.5737492442131042,
511
+ "learning_rate": 9.74128492131636e-06,
512
+ "loss": 0.377,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.3019648397104447,
517
+ "grad_norm": 0.6340614557266235,
518
+ "learning_rate": 9.730259764079636e-06,
519
+ "loss": 0.3887,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.30610134436401243,
524
+ "grad_norm": 0.5502659678459167,
525
+ "learning_rate": 9.719011069221316e-06,
526
+ "loss": 0.3749,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.31023784901758017,
531
+ "grad_norm": 0.48107632994651794,
532
+ "learning_rate": 9.70753936832034e-06,
533
+ "loss": 0.3445,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.31437435367114785,
538
+ "grad_norm": 0.47837021946907043,
539
+ "learning_rate": 9.695845203494242e-06,
540
+ "loss": 0.3566,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.3185108583247156,
545
+ "grad_norm": 0.5170641541481018,
546
+ "learning_rate": 9.683929127373514e-06,
547
+ "loss": 0.3878,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.32264736297828334,
552
+ "grad_norm": 0.5370326638221741,
553
+ "learning_rate": 9.671791703075502e-06,
554
+ "loss": 0.3545,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.3267838676318511,
559
+ "grad_norm": 0.5362874865531921,
560
+ "learning_rate": 9.659433504177786e-06,
561
+ "loss": 0.3947,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.3309203722854188,
566
+ "grad_norm": 0.5446822047233582,
567
+ "learning_rate": 9.646855114691081e-06,
568
+ "loss": 0.3777,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.33505687693898656,
573
+ "grad_norm": 0.5000081658363342,
574
+ "learning_rate": 9.63405712903164e-06,
575
+ "loss": 0.3713,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.3391933815925543,
580
+ "grad_norm": 0.4431915581226349,
581
+ "learning_rate": 9.621040151993153e-06,
582
+ "loss": 0.3508,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.34332988624612204,
587
+ "grad_norm": 0.51210618019104,
588
+ "learning_rate": 9.607804798718182e-06,
589
+ "loss": 0.3702,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.3474663908996898,
594
+ "grad_norm": 0.49018731713294983,
595
+ "learning_rate": 9.59435169466907e-06,
596
+ "loss": 0.3796,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.3516028955532575,
601
+ "grad_norm": 0.5700220465660095,
602
+ "learning_rate": 9.580681475598413e-06,
603
+ "loss": 0.3882,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.3557394002068252,
608
+ "grad_norm": 0.48753252625465393,
609
+ "learning_rate": 9.566794787518986e-06,
610
+ "loss": 0.3773,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.35987590486039295,
615
+ "grad_norm": 0.47645437717437744,
616
+ "learning_rate": 9.552692286673231e-06,
617
+ "loss": 0.3478,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.3640124095139607,
622
+ "grad_norm": 0.4645499587059021,
623
+ "learning_rate": 9.538374639502247e-06,
624
+ "loss": 0.3523,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.36814891416752843,
629
+ "grad_norm": 0.4936198890209198,
630
+ "learning_rate": 9.523842522614285e-06,
631
+ "loss": 0.3233,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.37228541882109617,
636
+ "grad_norm": 0.47896862030029297,
637
+ "learning_rate": 9.509096622752781e-06,
638
+ "loss": 0.3583,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.3764219234746639,
643
+ "grad_norm": 0.4804452955722809,
644
+ "learning_rate": 9.4941376367639e-06,
645
+ "loss": 0.3441,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.38055842812823165,
650
+ "grad_norm": 0.47014203667640686,
651
+ "learning_rate": 9.478966271563614e-06,
652
+ "loss": 0.3406,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.3846949327817994,
657
+ "grad_norm": 0.5452392101287842,
658
+ "learning_rate": 9.463583244104274e-06,
659
+ "loss": 0.3658,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.38883143743536713,
664
+ "grad_norm": 0.49594131112098694,
665
+ "learning_rate": 9.447989281340753e-06,
666
+ "loss": 0.3644,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.3929679420889349,
671
+ "grad_norm": 0.48177802562713623,
672
+ "learning_rate": 9.43218512019608e-06,
673
+ "loss": 0.364,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.39710444674250256,
678
+ "grad_norm": 0.4789188504219055,
679
+ "learning_rate": 9.416171507526615e-06,
680
+ "loss": 0.3724,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.4012409513960703,
685
+ "grad_norm": 0.5925107598304749,
686
+ "learning_rate": 9.399949200086757e-06,
687
+ "loss": 0.3799,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.40537745604963804,
692
+ "grad_norm": 0.540553092956543,
693
+ "learning_rate": 9.383518964493183e-06,
694
+ "loss": 0.3913,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.4095139607032058,
699
+ "grad_norm": 0.5033954977989197,
700
+ "learning_rate": 9.36688157718862e-06,
701
+ "loss": 0.3882,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.4136504653567735,
706
+ "grad_norm": 0.4835229218006134,
707
+ "learning_rate": 9.350037824405151e-06,
708
+ "loss": 0.357,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.41778697001034126,
713
+ "grad_norm": 0.5028110146522522,
714
+ "learning_rate": 9.332988502127063e-06,
715
+ "loss": 0.3395,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.421923474663909,
720
+ "grad_norm": 0.6103828549385071,
721
+ "learning_rate": 9.315734416053223e-06,
722
+ "loss": 0.3832,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.42605997931747674,
727
+ "grad_norm": 0.4925767481327057,
728
+ "learning_rate": 9.298276381559015e-06,
729
+ "loss": 0.3414,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.4301964839710445,
734
+ "grad_norm": 0.5328059792518616,
735
+ "learning_rate": 9.280615223657801e-06,
736
+ "loss": 0.3887,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.4343329886246122,
741
+ "grad_norm": 0.5046906471252441,
742
+ "learning_rate": 9.262751776961936e-06,
743
+ "loss": 0.3608,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.4384694932781799,
748
+ "grad_norm": 0.4689864218235016,
749
+ "learning_rate": 9.24468688564332e-06,
750
+ "loss": 0.3734,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.44260599793174765,
755
+ "grad_norm": 0.46193334460258484,
756
+ "learning_rate": 9.226421403393513e-06,
757
+ "loss": 0.3557,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.4467425025853154,
762
+ "grad_norm": 0.518205463886261,
763
+ "learning_rate": 9.207956193383392e-06,
764
+ "loss": 0.3293,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.45087900723888313,
769
+ "grad_norm": 0.5061272978782654,
770
+ "learning_rate": 9.189292128222355e-06,
771
+ "loss": 0.3477,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.4550155118924509,
776
+ "grad_norm": 0.46607810258865356,
777
+ "learning_rate": 9.170430089917089e-06,
778
+ "loss": 0.3978,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.4591520165460186,
783
+ "grad_norm": 0.4538101851940155,
784
+ "learning_rate": 9.151370969829883e-06,
785
+ "loss": 0.3525,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.46328852119958636,
790
+ "grad_norm": 0.4456521272659302,
791
+ "learning_rate": 9.132115668636512e-06,
792
+ "loss": 0.3575,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.4674250258531541,
797
+ "grad_norm": 0.5219409465789795,
798
+ "learning_rate": 9.112665096283668e-06,
799
+ "loss": 0.3703,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.47156153050672184,
804
+ "grad_norm": 0.5195448398590088,
805
+ "learning_rate": 9.093020171945966e-06,
806
+ "loss": 0.3651,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.4756980351602896,
811
+ "grad_norm": 0.5239256620407104,
812
+ "learning_rate": 9.073181823982495e-06,
813
+ "loss": 0.3555,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.47983453981385726,
818
+ "grad_norm": 0.4262794852256775,
819
+ "learning_rate": 9.05315098989296e-06,
820
+ "loss": 0.3303,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.483971044467425,
825
+ "grad_norm": 0.4619412422180176,
826
+ "learning_rate": 9.032928616273369e-06,
827
+ "loss": 0.3612,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.48810754912099275,
832
+ "grad_norm": 0.468650758266449,
833
+ "learning_rate": 9.012515658771301e-06,
834
+ "loss": 0.3725,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.4922440537745605,
839
+ "grad_norm": 0.4874132573604584,
840
+ "learning_rate": 8.991913082040752e-06,
841
+ "loss": 0.3671,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.4963805584281282,
846
+ "grad_norm": 0.48114946484565735,
847
+ "learning_rate": 8.971121859696539e-06,
848
+ "loss": 0.3603,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.500517063081696,
853
+ "grad_norm": 0.5342724919319153,
854
+ "learning_rate": 8.950142974268295e-06,
855
+ "loss": 0.3561,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.5046535677352637,
860
+ "grad_norm": 0.5296602845191956,
861
+ "learning_rate": 8.928977417154037e-06,
862
+ "loss": 0.3552,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.5087900723888314,
867
+ "grad_norm": 0.47604137659072876,
868
+ "learning_rate": 8.907626188573319e-06,
869
+ "loss": 0.3751,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.5129265770423992,
874
+ "grad_norm": 0.544127345085144,
875
+ "learning_rate": 8.886090297519956e-06,
876
+ "loss": 0.39,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.5170630816959669,
881
+ "grad_norm": 0.495714396238327,
882
+ "learning_rate": 8.864370761714348e-06,
883
+ "loss": 0.3764,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.5211995863495347,
888
+ "grad_norm": 0.45246466994285583,
889
+ "learning_rate": 8.842468607555389e-06,
890
+ "loss": 0.3273,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.5253360910031024,
895
+ "grad_norm": 0.46964627504348755,
896
+ "learning_rate": 8.820384870071951e-06,
897
+ "loss": 0.3712,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.5294725956566702,
902
+ "grad_norm": 0.5150438547134399,
903
+ "learning_rate": 8.79812059287399e-06,
904
+ "loss": 0.3676,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.5336091003102379,
909
+ "grad_norm": 0.48608115315437317,
910
+ "learning_rate": 8.775676828103205e-06,
911
+ "loss": 0.3862,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.5377456049638056,
916
+ "grad_norm": 0.5238416790962219,
917
+ "learning_rate": 8.753054636383336e-06,
918
+ "loss": 0.3927,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.5418821096173733,
923
+ "grad_norm": 0.4756030738353729,
924
+ "learning_rate": 8.730255086770037e-06,
925
+ "loss": 0.3429,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.546018614270941,
930
+ "grad_norm": 0.46515801548957825,
931
+ "learning_rate": 8.707279256700348e-06,
932
+ "loss": 0.3367,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.5501551189245087,
937
+ "grad_norm": 0.5517006516456604,
938
+ "learning_rate": 8.684128231941789e-06,
939
+ "loss": 0.3688,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.5542916235780765,
944
+ "grad_norm": 0.5072327852249146,
945
+ "learning_rate": 8.660803106541044e-06,
946
+ "loss": 0.3224,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.5584281282316442,
951
+ "grad_norm": 0.4414540231227875,
952
+ "learning_rate": 8.637304982772263e-06,
953
+ "loss": 0.3166,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.562564632885212,
958
+ "grad_norm": 0.5401909351348877,
959
+ "learning_rate": 8.613634971084967e-06,
960
+ "loss": 0.3697,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.5667011375387797,
965
+ "grad_norm": 0.502416729927063,
966
+ "learning_rate": 8.589794190051582e-06,
967
+ "loss": 0.3647,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.5708376421923474,
972
+ "grad_norm": 0.49979519844055176,
973
+ "learning_rate": 8.56578376631456e-06,
974
+ "loss": 0.3542,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.5749741468459152,
979
+ "grad_norm": 0.4783455431461334,
980
+ "learning_rate": 8.541604834533159e-06,
981
+ "loss": 0.3577,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.5791106514994829,
986
+ "grad_norm": 0.4866260886192322,
987
+ "learning_rate": 8.51725853732981e-06,
988
+ "loss": 0.3567,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.5832471561530507,
993
+ "grad_norm": 0.480307012796402,
994
+ "learning_rate": 8.492746025236113e-06,
995
+ "loss": 0.335,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.5873836608066184,
1000
+ "grad_norm": 0.4932575821876526,
1001
+ "learning_rate": 8.468068456638491e-06,
1002
+ "loss": 0.3411,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.5915201654601862,
1007
+ "grad_norm": 0.49242812395095825,
1008
+ "learning_rate": 8.443226997723426e-06,
1009
+ "loss": 0.3589,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.5956566701137539,
1014
+ "grad_norm": 0.5170210599899292,
1015
+ "learning_rate": 8.418222822422348e-06,
1016
+ "loss": 0.385,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.5997931747673216,
1021
+ "grad_norm": 0.45948079228401184,
1022
+ "learning_rate": 8.393057112356181e-06,
1023
+ "loss": 0.3502,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.6039296794208894,
1028
+ "grad_norm": 0.47525444626808167,
1029
+ "learning_rate": 8.367731056779476e-06,
1030
+ "loss": 0.3387,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.6080661840744571,
1035
+ "grad_norm": 0.4996655583381653,
1036
+ "learning_rate": 8.342245852524229e-06,
1037
+ "loss": 0.3243,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.6122026887280249,
1042
+ "grad_norm": 0.4717055559158325,
1043
+ "learning_rate": 8.316602703943315e-06,
1044
+ "loss": 0.3696,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.6163391933815926,
1049
+ "grad_norm": 0.5229761600494385,
1050
+ "learning_rate": 8.290802822853576e-06,
1051
+ "loss": 0.4026,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.6204756980351603,
1056
+ "grad_norm": 0.4920945465564728,
1057
+ "learning_rate": 8.26484742847855e-06,
1058
+ "loss": 0.3555,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.6246122026887281,
1063
+ "grad_norm": 0.416532963514328,
1064
+ "learning_rate": 8.238737747390859e-06,
1065
+ "loss": 0.3145,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.6287487073422957,
1070
+ "grad_norm": 0.4948025941848755,
1071
+ "learning_rate": 8.212475013454249e-06,
1072
+ "loss": 0.3603,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.6328852119958635,
1077
+ "grad_norm": 0.4692654013633728,
1078
+ "learning_rate": 8.186060467765268e-06,
1079
+ "loss": 0.3541,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.6370217166494312,
1084
+ "grad_norm": 0.4930100440979004,
1085
+ "learning_rate": 8.159495358594627e-06,
1086
+ "loss": 0.328,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.6411582213029989,
1091
+ "grad_norm": 0.46493637561798096,
1092
+ "learning_rate": 8.13278094132821e-06,
1093
+ "loss": 0.3514,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.6452947259565667,
1098
+ "grad_norm": 0.5059131383895874,
1099
+ "learning_rate": 8.10591847840774e-06,
1100
+ "loss": 0.3522,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.6494312306101344,
1105
+ "grad_norm": 0.5415008664131165,
1106
+ "learning_rate": 8.078909239271127e-06,
1107
+ "loss": 0.345,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.6535677352637022,
1112
+ "grad_norm": 0.49019861221313477,
1113
+ "learning_rate": 8.051754500292479e-06,
1114
+ "loss": 0.3526,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.6577042399172699,
1119
+ "grad_norm": 0.4391830563545227,
1120
+ "learning_rate": 8.024455544721778e-06,
1121
+ "loss": 0.3368,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.6618407445708376,
1126
+ "grad_norm": 0.5758143663406372,
1127
+ "learning_rate": 7.997013662624246e-06,
1128
+ "loss": 0.3606,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.6659772492244054,
1133
+ "grad_norm": 0.46434131264686584,
1134
+ "learning_rate": 7.969430150819372e-06,
1135
+ "loss": 0.3263,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.6701137538779731,
1140
+ "grad_norm": 0.5234054923057556,
1141
+ "learning_rate": 7.941706312819632e-06,
1142
+ "loss": 0.3635,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.6742502585315409,
1147
+ "grad_norm": 0.46102845668792725,
1148
+ "learning_rate": 7.913843458768892e-06,
1149
+ "loss": 0.3487,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.6783867631851086,
1154
+ "grad_norm": 0.505272388458252,
1155
+ "learning_rate": 7.88584290538049e-06,
1156
+ "loss": 0.3687,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.6825232678386763,
1161
+ "grad_norm": 0.5247129797935486,
1162
+ "learning_rate": 7.857705975875015e-06,
1163
+ "loss": 0.3575,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.6866597724922441,
1168
+ "grad_norm": 0.4995476007461548,
1169
+ "learning_rate": 7.829433999917773e-06,
1170
+ "loss": 0.3583,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.6907962771458118,
1175
+ "grad_norm": 0.478943407535553,
1176
+ "learning_rate": 7.801028313555954e-06,
1177
+ "loss": 0.3539,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.6949327817993796,
1182
+ "grad_norm": 0.4750828146934509,
1183
+ "learning_rate": 7.772490259155493e-06,
1184
+ "loss": 0.3317,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.6990692864529473,
1189
+ "grad_norm": 0.4754940867424011,
1190
+ "learning_rate": 7.743821185337634e-06,
1191
+ "loss": 0.3209,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.703205791106515,
1196
+ "grad_norm": 0.4950121343135834,
1197
+ "learning_rate": 7.715022446915195e-06,
1198
+ "loss": 0.3341,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.7073422957600828,
1203
+ "grad_norm": 0.48745468258857727,
1204
+ "learning_rate": 7.686095404828552e-06,
1205
+ "loss": 0.3602,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.7114788004136504,
1210
+ "grad_norm": 0.48764947056770325,
1211
+ "learning_rate": 7.65704142608132e-06,
1212
+ "loss": 0.3624,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.7156153050672182,
1217
+ "grad_norm": 0.5114070773124695,
1218
+ "learning_rate": 7.627861883675748e-06,
1219
+ "loss": 0.3449,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.7197518097207859,
1224
+ "grad_norm": 0.4847152829170227,
1225
+ "learning_rate": 7.598558156547842e-06,
1226
+ "loss": 0.3318,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.7238883143743536,
1231
+ "grad_norm": 0.5162774920463562,
1232
+ "learning_rate": 7.569131629502201e-06,
1233
+ "loss": 0.3539,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.7280248190279214,
1238
+ "grad_norm": 0.49352213740348816,
1239
+ "learning_rate": 7.53958369314657e-06,
1240
+ "loss": 0.3504,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.7321613236814891,
1245
+ "grad_norm": 0.4514661133289337,
1246
+ "learning_rate": 7.509915743826128e-06,
1247
+ "loss": 0.3602,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.7362978283350569,
1252
+ "grad_norm": 0.5056818127632141,
1253
+ "learning_rate": 7.480129183557499e-06,
1254
+ "loss": 0.3511,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.7404343329886246,
1259
+ "grad_norm": 0.5009995102882385,
1260
+ "learning_rate": 7.450225419962498e-06,
1261
+ "loss": 0.3299,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.7445708376421923,
1266
+ "grad_norm": 0.5529451966285706,
1267
+ "learning_rate": 7.4202058662016155e-06,
1268
+ "loss": 0.3605,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.7487073422957601,
1273
+ "grad_norm": 0.5108004212379456,
1274
+ "learning_rate": 7.390071940907222e-06,
1275
+ "loss": 0.3497,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.7528438469493278,
1280
+ "grad_norm": 0.45150938630104065,
1281
+ "learning_rate": 7.3598250681165485e-06,
1282
+ "loss": 0.347,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.7569803516028956,
1287
+ "grad_norm": 0.49005162715911865,
1288
+ "learning_rate": 7.329466677204371e-06,
1289
+ "loss": 0.3485,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.7611168562564633,
1294
+ "grad_norm": 0.4927361011505127,
1295
+ "learning_rate": 7.298998202815474e-06,
1296
+ "loss": 0.3432,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.765253360910031,
1301
+ "grad_norm": 0.48336061835289,
1302
+ "learning_rate": 7.268421084796852e-06,
1303
+ "loss": 0.3443,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.7693898655635988,
1308
+ "grad_norm": 0.48736652731895447,
1309
+ "learning_rate": 7.237736768129663e-06,
1310
+ "loss": 0.3418,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.7735263702171665,
1315
+ "grad_norm": 0.4602266252040863,
1316
+ "learning_rate": 7.206946702860948e-06,
1317
+ "loss": 0.3322,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.7776628748707343,
1322
+ "grad_norm": 0.4475662410259247,
1323
+ "learning_rate": 7.176052344035101e-06,
1324
+ "loss": 0.3519,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.781799379524302,
1329
+ "grad_norm": 0.46669697761535645,
1330
+ "learning_rate": 7.145055151625113e-06,
1331
+ "loss": 0.3623,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.7859358841778697,
1336
+ "grad_norm": 0.4729274809360504,
1337
+ "learning_rate": 7.1139565904635755e-06,
1338
+ "loss": 0.3517,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.7900723888314375,
1343
+ "grad_norm": 0.49703437089920044,
1344
+ "learning_rate": 7.082758130173456e-06,
1345
+ "loss": 0.3732,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.7942088934850051,
1350
+ "grad_norm": 0.5119916200637817,
1351
+ "learning_rate": 7.051461245098654e-06,
1352
+ "loss": 0.3421,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.7983453981385729,
1357
+ "grad_norm": 0.4503278434276581,
1358
+ "learning_rate": 7.020067414234315e-06,
1359
+ "loss": 0.3342,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.8024819027921406,
1364
+ "grad_norm": 0.46572044491767883,
1365
+ "learning_rate": 6.988578121156956e-06,
1366
+ "loss": 0.3314,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.8066184074457083,
1371
+ "grad_norm": 0.49221017956733704,
1372
+ "learning_rate": 6.956994853954342e-06,
1373
+ "loss": 0.3634,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.8107549120992761,
1378
+ "grad_norm": 0.5337055921554565,
1379
+ "learning_rate": 6.925319105155165e-06,
1380
+ "loss": 0.346,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.8148914167528438,
1385
+ "grad_norm": 0.4575997591018677,
1386
+ "learning_rate": 6.8935523716585195e-06,
1387
+ "loss": 0.3538,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.8190279214064116,
1392
+ "grad_norm": 0.5041812062263489,
1393
+ "learning_rate": 6.8616961546631575e-06,
1394
+ "loss": 0.3548,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.8231644260599793,
1399
+ "grad_norm": 0.4733670651912689,
1400
+ "learning_rate": 6.829751959596544e-06,
1401
+ "loss": 0.3414,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.827300930713547,
1406
+ "grad_norm": 0.48330968618392944,
1407
+ "learning_rate": 6.797721296043727e-06,
1408
+ "loss": 0.325,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.8314374353671148,
1413
+ "grad_norm": 0.4963349997997284,
1414
+ "learning_rate": 6.765605677675982e-06,
1415
+ "loss": 0.3858,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.8355739400206825,
1420
+ "grad_norm": 0.5333994626998901,
1421
+ "learning_rate": 6.733406622179295e-06,
1422
+ "loss": 0.3538,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.8397104446742503,
1427
+ "grad_norm": 0.4624415338039398,
1428
+ "learning_rate": 6.701125651182631e-06,
1429
+ "loss": 0.3025,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.843846949327818,
1434
+ "grad_norm": 0.45845648646354675,
1435
+ "learning_rate": 6.668764290186039e-06,
1436
+ "loss": 0.3458,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.8479834539813857,
1441
+ "grad_norm": 0.5057909488677979,
1442
+ "learning_rate": 6.6363240684885465e-06,
1443
+ "loss": 0.33,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.8521199586349535,
1448
+ "grad_norm": 0.5474227666854858,
1449
+ "learning_rate": 6.603806519115899e-06,
1450
+ "loss": 0.3386,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.8562564632885212,
1455
+ "grad_norm": 0.5117132067680359,
1456
+ "learning_rate": 6.571213178748112e-06,
1457
+ "loss": 0.3775,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.860392967942089,
1462
+ "grad_norm": 0.4669731557369232,
1463
+ "learning_rate": 6.538545587646854e-06,
1464
+ "loss": 0.3575,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.8645294725956567,
1469
+ "grad_norm": 0.4318840503692627,
1470
+ "learning_rate": 6.50580528958265e-06,
1471
+ "loss": 0.3201,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.8686659772492245,
1476
+ "grad_norm": 0.5034843683242798,
1477
+ "learning_rate": 6.47299383176194e-06,
1478
+ "loss": 0.3169,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.8728024819027922,
1483
+ "grad_norm": 0.5146070122718811,
1484
+ "learning_rate": 6.440112764753956e-06,
1485
+ "loss": 0.3653,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.8769389865563598,
1490
+ "grad_norm": 0.49277129769325256,
1491
+ "learning_rate": 6.4071636424174435e-06,
1492
+ "loss": 0.3485,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.8810754912099276,
1497
+ "grad_norm": 0.4620700776576996,
1498
+ "learning_rate": 6.374148021827237e-06,
1499
+ "loss": 0.3525,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.8852119958634953,
1504
+ "grad_norm": 0.5235023498535156,
1505
+ "learning_rate": 6.341067463200678e-06,
1506
+ "loss": 0.3638,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.889348500517063,
1511
+ "grad_norm": 0.4999266564846039,
1512
+ "learning_rate": 6.307923529823876e-06,
1513
+ "loss": 0.3692,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.8934850051706308,
1518
+ "grad_norm": 0.46116530895233154,
1519
+ "learning_rate": 6.2747177879778424e-06,
1520
+ "loss": 0.3316,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.8976215098241985,
1525
+ "grad_norm": 0.4651578664779663,
1526
+ "learning_rate": 6.241451806864465e-06,
1527
+ "loss": 0.3176,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.9017580144777663,
1532
+ "grad_norm": 0.45744726061820984,
1533
+ "learning_rate": 6.208127158532358e-06,
1534
+ "loss": 0.3261,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.905894519131334,
1539
+ "grad_norm": 0.4478837549686432,
1540
+ "learning_rate": 6.174745417802563e-06,
1541
+ "loss": 0.3357,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.9100310237849017,
1546
+ "grad_norm": 0.49428898096084595,
1547
+ "learning_rate": 6.141308162194141e-06,
1548
+ "loss": 0.321,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.9141675284384695,
1553
+ "grad_norm": 0.4366098642349243,
1554
+ "learning_rate": 6.1078169718496164e-06,
1555
+ "loss": 0.3132,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.9183040330920372,
1560
+ "grad_norm": 0.5066491365432739,
1561
+ "learning_rate": 6.074273429460296e-06,
1562
+ "loss": 0.3342,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.922440537745605,
1567
+ "grad_norm": 0.4254951775074005,
1568
+ "learning_rate": 6.040679120191491e-06,
1569
+ "loss": 0.3089,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.9265770423991727,
1574
+ "grad_norm": 0.46807774901390076,
1575
+ "learning_rate": 6.007035631607605e-06,
1576
+ "loss": 0.3182,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.9307135470527405,
1581
+ "grad_norm": 0.4610796570777893,
1582
+ "learning_rate": 5.9733445535970915e-06,
1583
+ "loss": 0.3239,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.9348500517063082,
1588
+ "grad_norm": 0.5245600342750549,
1589
+ "learning_rate": 5.939607478297347e-06,
1590
+ "loss": 0.3818,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.9389865563598759,
1595
+ "grad_norm": 0.45463472604751587,
1596
+ "learning_rate": 5.905826000019458e-06,
1597
+ "loss": 0.3109,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.9431230610134437,
1602
+ "grad_norm": 0.46084877848625183,
1603
+ "learning_rate": 5.8720017151728526e-06,
1604
+ "loss": 0.3475,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.9472595656670114,
1609
+ "grad_norm": 0.46296611428260803,
1610
+ "learning_rate": 5.838136222189874e-06,
1611
+ "loss": 0.3343,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.9513960703205792,
1616
+ "grad_norm": 0.458286315202713,
1617
+ "learning_rate": 5.804231121450235e-06,
1618
+ "loss": 0.3454,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.9555325749741469,
1623
+ "grad_norm": 0.42349058389663696,
1624
+ "learning_rate": 5.770288015205385e-06,
1625
+ "loss": 0.329,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.9596690796277145,
1630
+ "grad_norm": 0.4541251063346863,
1631
+ "learning_rate": 5.736308507502805e-06,
1632
+ "loss": 0.3296,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.9638055842812823,
1637
+ "grad_norm": 0.4887123107910156,
1638
+ "learning_rate": 5.702294204110191e-06,
1639
+ "loss": 0.3374,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.96794208893485,
1644
+ "grad_norm": 0.46135684847831726,
1645
+ "learning_rate": 5.668246712439579e-06,
1646
+ "loss": 0.3426,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.9720785935884177,
1651
+ "grad_norm": 0.4848094582557678,
1652
+ "learning_rate": 5.634167641471383e-06,
1653
+ "loss": 0.3626,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.9762150982419855,
1658
+ "grad_norm": 0.4424203932285309,
1659
+ "learning_rate": 5.600058601678357e-06,
1660
+ "loss": 0.302,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.9803516028955532,
1665
+ "grad_norm": 0.46382346749305725,
1666
+ "learning_rate": 5.5659212049494915e-06,
1667
+ "loss": 0.3357,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.984488107549121,
1672
+ "grad_norm": 0.4296742379665375,
1673
+ "learning_rate": 5.531757064513837e-06,
1674
+ "loss": 0.3162,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.9886246122026887,
1679
+ "grad_norm": 0.42605388164520264,
1680
+ "learning_rate": 5.4975677948642704e-06,
1681
+ "loss": 0.3204,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.9927611168562565,
1686
+ "grad_norm": 0.4539097547531128,
1687
+ "learning_rate": 5.4633550116812e-06,
1688
+ "loss": 0.327,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.9968976215098242,
1693
+ "grad_norm": 0.4806179404258728,
1694
+ "learning_rate": 5.429120331756208e-06,
1695
+ "loss": 0.3469,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 1.001034126163392,
1700
+ "grad_norm": 0.4494527280330658,
1701
+ "learning_rate": 5.394865372915656e-06,
1702
+ "loss": 0.3304,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 1.0051706308169597,
1707
+ "grad_norm": 0.5063448548316956,
1708
+ "learning_rate": 5.360591753944221e-06,
1709
+ "loss": 0.2792,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 1.0093071354705274,
1714
+ "grad_norm": 0.47153183817863464,
1715
+ "learning_rate": 5.3263010945083994e-06,
1716
+ "loss": 0.2593,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 1.0134436401240952,
1721
+ "grad_norm": 0.5729573369026184,
1722
+ "learning_rate": 5.291995015079969e-06,
1723
+ "loss": 0.2884,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.017580144777663,
1728
+ "grad_norm": 0.5748021602630615,
1729
+ "learning_rate": 5.257675136859415e-06,
1730
+ "loss": 0.2852,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.0217166494312306,
1735
+ "grad_norm": 0.49926644563674927,
1736
+ "learning_rate": 5.223343081699302e-06,
1737
+ "loss": 0.2947,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.0258531540847984,
1742
+ "grad_norm": 0.5036705732345581,
1743
+ "learning_rate": 5.189000472027645e-06,
1744
+ "loss": 0.2747,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.0299896587383661,
1749
+ "grad_norm": 0.557823896408081,
1750
+ "learning_rate": 5.1546489307712345e-06,
1751
+ "loss": 0.2724,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 1.0341261633919339,
1756
+ "grad_norm": 0.49561646580696106,
1757
+ "learning_rate": 5.1202900812789346e-06,
1758
+ "loss": 0.263,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 1.0382626680455016,
1763
+ "grad_norm": 0.46465885639190674,
1764
+ "learning_rate": 5.085925547244978e-06,
1765
+ "loss": 0.263,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 1.0423991726990693,
1770
+ "grad_norm": 0.5004085302352905,
1771
+ "learning_rate": 5.051556952632235e-06,
1772
+ "loss": 0.2831,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 1.046535677352637,
1777
+ "grad_norm": 0.5784794688224792,
1778
+ "learning_rate": 5.0171859215954575e-06,
1779
+ "loss": 0.2835,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 1.0506721820062048,
1784
+ "grad_norm": 0.4798305332660675,
1785
+ "learning_rate": 4.982814078404543e-06,
1786
+ "loss": 0.2382,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 1.0548086866597726,
1791
+ "grad_norm": 0.47284895181655884,
1792
+ "learning_rate": 4.948443047367767e-06,
1793
+ "loss": 0.2491,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 1.0589451913133403,
1798
+ "grad_norm": 0.4997791051864624,
1799
+ "learning_rate": 4.9140744527550225e-06,
1800
+ "loss": 0.2484,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 1.063081695966908,
1805
+ "grad_norm": 0.4812958836555481,
1806
+ "learning_rate": 4.879709918721067e-06,
1807
+ "loss": 0.2674,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 1.0672182006204758,
1812
+ "grad_norm": 0.4800451099872589,
1813
+ "learning_rate": 4.845351069228767e-06,
1814
+ "loss": 0.2625,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 1.0713547052740435,
1819
+ "grad_norm": 0.5013061165809631,
1820
+ "learning_rate": 4.8109995279723556e-06,
1821
+ "loss": 0.2739,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 1.0754912099276113,
1826
+ "grad_norm": 0.5202277898788452,
1827
+ "learning_rate": 4.776656918300699e-06,
1828
+ "loss": 0.2857,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 1.079627714581179,
1833
+ "grad_norm": 0.46747156977653503,
1834
+ "learning_rate": 4.742324863140587e-06,
1835
+ "loss": 0.2902,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 1.0837642192347468,
1840
+ "grad_norm": 0.4724840223789215,
1841
+ "learning_rate": 4.70800498492003e-06,
1842
+ "loss": 0.2845,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 1.0879007238883145,
1847
+ "grad_norm": 0.5077059864997864,
1848
+ "learning_rate": 4.673698905491602e-06,
1849
+ "loss": 0.297,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 1.092037228541882,
1854
+ "grad_norm": 0.4432675540447235,
1855
+ "learning_rate": 4.639408246055781e-06,
1856
+ "loss": 0.2286,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 1.0961737331954498,
1861
+ "grad_norm": 0.4326833188533783,
1862
+ "learning_rate": 4.605134627084345e-06,
1863
+ "loss": 0.2418,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 1.1003102378490175,
1868
+ "grad_norm": 0.4976271092891693,
1869
+ "learning_rate": 4.570879668243792e-06,
1870
+ "loss": 0.2825,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 1.1044467425025852,
1875
+ "grad_norm": 0.4635002613067627,
1876
+ "learning_rate": 4.536644988318802e-06,
1877
+ "loss": 0.2503,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 1.108583247156153,
1882
+ "grad_norm": 0.4908175766468048,
1883
+ "learning_rate": 4.502432205135731e-06,
1884
+ "loss": 0.298,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 1.1127197518097207,
1889
+ "grad_norm": 0.4961640238761902,
1890
+ "learning_rate": 4.468242935486164e-06,
1891
+ "loss": 0.2696,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 1.1168562564632885,
1896
+ "grad_norm": 0.49413740634918213,
1897
+ "learning_rate": 4.434078795050509e-06,
1898
+ "loss": 0.2938,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 1.1209927611168562,
1903
+ "grad_norm": 0.48604297637939453,
1904
+ "learning_rate": 4.3999413983216434e-06,
1905
+ "loss": 0.2884,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.125129265770424,
1910
+ "grad_norm": 0.4502314329147339,
1911
+ "learning_rate": 4.365832358528618e-06,
1912
+ "loss": 0.2514,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.1292657704239917,
1917
+ "grad_norm": 0.46243977546691895,
1918
+ "learning_rate": 4.331753287560423e-06,
1919
+ "loss": 0.2473,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.1334022750775594,
1924
+ "grad_norm": 0.48582252860069275,
1925
+ "learning_rate": 4.29770579588981e-06,
1926
+ "loss": 0.2926,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.1375387797311272,
1931
+ "grad_norm": 0.4945797622203827,
1932
+ "learning_rate": 4.263691492497197e-06,
1933
+ "loss": 0.2803,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.141675284384695,
1938
+ "grad_norm": 0.5017898082733154,
1939
+ "learning_rate": 4.229711984794614e-06,
1940
+ "loss": 0.2695,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.1458117890382626,
1945
+ "grad_norm": 0.44951367378234863,
1946
+ "learning_rate": 4.195768878549766e-06,
1947
+ "loss": 0.2548,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.1499482936918304,
1952
+ "grad_norm": 0.4264715611934662,
1953
+ "learning_rate": 4.161863777810128e-06,
1954
+ "loss": 0.2304,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.1540847983453981,
1959
+ "grad_norm": 0.4864782392978668,
1960
+ "learning_rate": 4.127998284827148e-06,
1961
+ "loss": 0.2883,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.1582213029989659,
1966
+ "grad_norm": 0.48877304792404175,
1967
+ "learning_rate": 4.094173999980544e-06,
1968
+ "loss": 0.2696,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 1.1623578076525336,
1973
+ "grad_norm": 0.4845278859138489,
1974
+ "learning_rate": 4.060392521702655e-06,
1975
+ "loss": 0.2696,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 1.1664943123061013,
1980
+ "grad_norm": 0.4687557816505432,
1981
+ "learning_rate": 4.026655446402912e-06,
1982
+ "loss": 0.2242,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 1.170630816959669,
1987
+ "grad_norm": 0.4510751962661743,
1988
+ "learning_rate": 3.9929643683923965e-06,
1989
+ "loss": 0.2534,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 1.1747673216132368,
1994
+ "grad_norm": 0.456969678401947,
1995
+ "learning_rate": 3.9593208798085094e-06,
1996
+ "loss": 0.239,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 1.1789038262668046,
2001
+ "grad_norm": 0.5285021066665649,
2002
+ "learning_rate": 3.9257265705397065e-06,
2003
+ "loss": 0.2706,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 1.1830403309203723,
2008
+ "grad_norm": 0.5108174085617065,
2009
+ "learning_rate": 3.892183028150384e-06,
2010
+ "loss": 0.292,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 1.18717683557394,
2015
+ "grad_norm": 0.4737439751625061,
2016
+ "learning_rate": 3.8586918378058595e-06,
2017
+ "loss": 0.2666,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 1.1913133402275078,
2022
+ "grad_norm": 0.46854445338249207,
2023
+ "learning_rate": 3.8252545821974385e-06,
2024
+ "loss": 0.2473,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 1.1954498448810755,
2029
+ "grad_norm": 0.5152525305747986,
2030
+ "learning_rate": 3.791872841467643e-06,
2031
+ "loss": 0.2787,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 1.1995863495346433,
2036
+ "grad_norm": 0.4602268636226654,
2037
+ "learning_rate": 3.758548193135536e-06,
2038
+ "loss": 0.2447,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 1.203722854188211,
2043
+ "grad_norm": 0.4676779806613922,
2044
+ "learning_rate": 3.7252822120221592e-06,
2045
+ "loss": 0.2715,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 1.2078593588417788,
2050
+ "grad_norm": 0.48289844393730164,
2051
+ "learning_rate": 3.6920764701761263e-06,
2052
+ "loss": 0.283,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 1.2119958634953465,
2057
+ "grad_norm": 0.4726490080356598,
2058
+ "learning_rate": 3.6589325367993243e-06,
2059
+ "loss": 0.2807,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 1.2161323681489142,
2064
+ "grad_norm": 0.5170783996582031,
2065
+ "learning_rate": 3.625851978172765e-06,
2066
+ "loss": 0.2636,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 1.220268872802482,
2071
+ "grad_norm": 0.46776092052459717,
2072
+ "learning_rate": 3.59283635758256e-06,
2073
+ "loss": 0.2457,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 1.2244053774560497,
2078
+ "grad_norm": 0.45310357213020325,
2079
+ "learning_rate": 3.5598872352460457e-06,
2080
+ "loss": 0.2538,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 1.2285418821096175,
2085
+ "grad_norm": 0.4700476825237274,
2086
+ "learning_rate": 3.527006168238061e-06,
2087
+ "loss": 0.2722,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 1.2326783867631852,
2092
+ "grad_norm": 0.4869045913219452,
2093
+ "learning_rate": 3.4941947104173514e-06,
2094
+ "loss": 0.2695,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 1.236814891416753,
2099
+ "grad_norm": 0.4840319752693176,
2100
+ "learning_rate": 3.4614544123531476e-06,
2101
+ "loss": 0.2671,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 1.2409513960703205,
2106
+ "grad_norm": 0.4536275565624237,
2107
+ "learning_rate": 3.428786821251888e-06,
2108
+ "loss": 0.2512,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 1.2450879007238882,
2113
+ "grad_norm": 0.4808495342731476,
2114
+ "learning_rate": 3.3961934808841023e-06,
2115
+ "loss": 0.2531,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 1.249224405377456,
2120
+ "grad_norm": 0.48514485359191895,
2121
+ "learning_rate": 3.363675931511455e-06,
2122
+ "loss": 0.2695,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 1.2533609100310237,
2127
+ "grad_norm": 0.48374173045158386,
2128
+ "learning_rate": 3.331235709813962e-06,
2129
+ "loss": 0.2706,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 1.2574974146845914,
2134
+ "grad_norm": 0.4591769278049469,
2135
+ "learning_rate": 3.29887434881737e-06,
2136
+ "loss": 0.2578,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 1.2616339193381592,
2141
+ "grad_norm": 0.4645506739616394,
2142
+ "learning_rate": 3.2665933778207082e-06,
2143
+ "loss": 0.2717,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 1.265770423991727,
2148
+ "grad_norm": 0.5053009986877441,
2149
+ "learning_rate": 3.234394322324019e-06,
2150
+ "loss": 0.2713,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 1.2699069286452946,
2155
+ "grad_norm": 0.46575117111206055,
2156
+ "learning_rate": 3.2022787039562745e-06,
2157
+ "loss": 0.2445,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 1.2740434332988624,
2162
+ "grad_norm": 0.4733026623725891,
2163
+ "learning_rate": 3.170248040403457e-06,
2164
+ "loss": 0.2602,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 1.2781799379524301,
2169
+ "grad_norm": 0.4547727406024933,
2170
+ "learning_rate": 3.138303845336844e-06,
2171
+ "loss": 0.2545,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 1.2823164426059979,
2176
+ "grad_norm": 0.5043481588363647,
2177
+ "learning_rate": 3.1064476283414818e-06,
2178
+ "loss": 0.2848,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 1.2864529472595656,
2183
+ "grad_norm": 0.49556779861450195,
2184
+ "learning_rate": 3.074680894844837e-06,
2185
+ "loss": 0.2659,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 1.2905894519131333,
2190
+ "grad_norm": 0.4662742614746094,
2191
+ "learning_rate": 3.04300514604566e-06,
2192
+ "loss": 0.2696,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 1.294725956566701,
2197
+ "grad_norm": 0.46650293469429016,
2198
+ "learning_rate": 3.011421878843044e-06,
2199
+ "loss": 0.2573,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 1.2988624612202688,
2204
+ "grad_norm": 0.471865177154541,
2205
+ "learning_rate": 2.9799325857656856e-06,
2206
+ "loss": 0.2598,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 1.3029989658738366,
2211
+ "grad_norm": 0.49665728211402893,
2212
+ "learning_rate": 2.948538754901349e-06,
2213
+ "loss": 0.285,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 1.3071354705274043,
2218
+ "grad_norm": 0.47322675585746765,
2219
+ "learning_rate": 2.917241869826545e-06,
2220
+ "loss": 0.2523,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 1.311271975180972,
2225
+ "grad_norm": 0.4811559021472931,
2226
+ "learning_rate": 2.8860434095364266e-06,
2227
+ "loss": 0.2762,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 1.3154084798345398,
2232
+ "grad_norm": 0.48528894782066345,
2233
+ "learning_rate": 2.8549448483748888e-06,
2234
+ "loss": 0.2812,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 1.3195449844881075,
2239
+ "grad_norm": 0.47023531794548035,
2240
+ "learning_rate": 2.8239476559649013e-06,
2241
+ "loss": 0.2857,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 1.3236814891416753,
2246
+ "grad_norm": 0.4679359793663025,
2247
+ "learning_rate": 2.7930532971390543e-06,
2248
+ "loss": 0.2639,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 1.327817993795243,
2253
+ "grad_norm": 0.4885619580745697,
2254
+ "learning_rate": 2.762263231870339e-06,
2255
+ "loss": 0.2919,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 1.3319544984488108,
2260
+ "grad_norm": 0.4528388977050781,
2261
+ "learning_rate": 2.7315789152031504e-06,
2262
+ "loss": 0.2491,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 1.3360910031023785,
2267
+ "grad_norm": 0.43351301550865173,
2268
+ "learning_rate": 2.7010017971845267e-06,
2269
+ "loss": 0.2334,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 1.3402275077559462,
2274
+ "grad_norm": 0.4791943430900574,
2275
+ "learning_rate": 2.6705333227956304e-06,
2276
+ "loss": 0.2759,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 1.344364012409514,
2281
+ "grad_norm": 0.42758721113204956,
2282
+ "learning_rate": 2.6401749318834528e-06,
2283
+ "loss": 0.2574,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 1.3485005170630817,
2288
+ "grad_norm": 0.4758831858634949,
2289
+ "learning_rate": 2.609928059092779e-06,
2290
+ "loss": 0.2459,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 1.3526370217166495,
2295
+ "grad_norm": 0.45820891857147217,
2296
+ "learning_rate": 2.579794133798388e-06,
2297
+ "loss": 0.2678,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 1.3567735263702172,
2302
+ "grad_norm": 0.4830312132835388,
2303
+ "learning_rate": 2.549774580037504e-06,
2304
+ "loss": 0.2627,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 1.360910031023785,
2309
+ "grad_norm": 0.48166197538375854,
2310
+ "learning_rate": 2.5198708164425046e-06,
2311
+ "loss": 0.2524,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 1.3650465356773527,
2316
+ "grad_norm": 0.48581820726394653,
2317
+ "learning_rate": 2.4900842561738736e-06,
2318
+ "loss": 0.2527,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 1.3691830403309204,
2323
+ "grad_norm": 0.49055343866348267,
2324
+ "learning_rate": 2.4604163068534313e-06,
2325
+ "loss": 0.2541,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 1.3733195449844882,
2330
+ "grad_norm": 0.4789126217365265,
2331
+ "learning_rate": 2.4308683704978e-06,
2332
+ "loss": 0.2597,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 1.377456049638056,
2337
+ "grad_norm": 0.5069748759269714,
2338
+ "learning_rate": 2.401441843452159e-06,
2339
+ "loss": 0.2842,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 1.3815925542916236,
2344
+ "grad_norm": 0.49611082673072815,
2345
+ "learning_rate": 2.372138116324254e-06,
2346
+ "loss": 0.2648,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 1.3857290589451914,
2351
+ "grad_norm": 0.4773513376712799,
2352
+ "learning_rate": 2.342958573918682e-06,
2353
+ "loss": 0.2846,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 1.3898655635987591,
2358
+ "grad_norm": 0.49834293127059937,
2359
+ "learning_rate": 2.3139045951714473e-06,
2360
+ "loss": 0.288,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 1.3940020682523269,
2365
+ "grad_norm": 0.46547529101371765,
2366
+ "learning_rate": 2.2849775530848057e-06,
2367
+ "loss": 0.242,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 1.3981385729058946,
2372
+ "grad_norm": 0.46302109956741333,
2373
+ "learning_rate": 2.256178814662368e-06,
2374
+ "loss": 0.2553,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 1.4022750775594623,
2379
+ "grad_norm": 0.5011090636253357,
2380
+ "learning_rate": 2.227509740844508e-06,
2381
+ "loss": 0.281,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 1.40641158221303,
2386
+ "grad_norm": 0.43727773427963257,
2387
+ "learning_rate": 2.198971686444047e-06,
2388
+ "loss": 0.2409,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 1.4105480868665978,
2393
+ "grad_norm": 0.4928194582462311,
2394
+ "learning_rate": 2.1705660000822286e-06,
2395
+ "loss": 0.299,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 1.4146845915201656,
2400
+ "grad_norm": 0.4691973328590393,
2401
+ "learning_rate": 2.1422940241249875e-06,
2402
+ "loss": 0.2552,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 1.4188210961737333,
2407
+ "grad_norm": 0.4593028724193573,
2408
+ "learning_rate": 2.1141570946195106e-06,
2409
+ "loss": 0.255,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 1.422957600827301,
2414
+ "grad_norm": 0.4884447753429413,
2415
+ "learning_rate": 2.086156541231109e-06,
2416
+ "loss": 0.2601,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 1.4270941054808688,
2421
+ "grad_norm": 0.5032863616943359,
2422
+ "learning_rate": 2.0582936871803692e-06,
2423
+ "loss": 0.2888,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 1.4312306101344365,
2428
+ "grad_norm": 0.46444255113601685,
2429
+ "learning_rate": 2.0305698491806297e-06,
2430
+ "loss": 0.2402,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 1.4353671147880043,
2435
+ "grad_norm": 0.4745306074619293,
2436
+ "learning_rate": 2.0029863373757553e-06,
2437
+ "loss": 0.2665,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 1.4395036194415718,
2442
+ "grad_norm": 0.4591853618621826,
2443
+ "learning_rate": 1.9755444552782228e-06,
2444
+ "loss": 0.2209,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 1.4436401240951395,
2449
+ "grad_norm": 0.4660813808441162,
2450
+ "learning_rate": 1.948245499707523e-06,
2451
+ "loss": 0.2559,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 1.4477766287487073,
2456
+ "grad_norm": 0.4885343909263611,
2457
+ "learning_rate": 1.9210907607288728e-06,
2458
+ "loss": 0.281,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 1.451913133402275,
2463
+ "grad_norm": 0.4733608365058899,
2464
+ "learning_rate": 1.8940815215922609e-06,
2465
+ "loss": 0.2762,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 1.4560496380558428,
2470
+ "grad_norm": 0.46303790807724,
2471
+ "learning_rate": 1.867219058671791e-06,
2472
+ "loss": 0.2626,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 1.4601861427094105,
2477
+ "grad_norm": 0.4606141149997711,
2478
+ "learning_rate": 1.8405046414053728e-06,
2479
+ "loss": 0.2434,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 1.4643226473629782,
2484
+ "grad_norm": 0.4833987057209015,
2485
+ "learning_rate": 1.8139395322347335e-06,
2486
+ "loss": 0.2546,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 1.468459152016546,
2491
+ "grad_norm": 0.44073909521102905,
2492
+ "learning_rate": 1.787524986545753e-06,
2493
+ "loss": 0.2511,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 1.4725956566701137,
2498
+ "grad_norm": 0.45749855041503906,
2499
+ "learning_rate": 1.7612622526091406e-06,
2500
+ "loss": 0.2391,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 1.4767321613236815,
2505
+ "grad_norm": 0.4941197633743286,
2506
+ "learning_rate": 1.7351525715214512e-06,
2507
+ "loss": 0.2607,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 1.4808686659772492,
2512
+ "grad_norm": 0.4428948760032654,
2513
+ "learning_rate": 1.709197177146425e-06,
2514
+ "loss": 0.2477,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 1.485005170630817,
2519
+ "grad_norm": 0.5241663455963135,
2520
+ "learning_rate": 1.6833972960566868e-06,
2521
+ "loss": 0.258,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 1.4891416752843847,
2526
+ "grad_norm": 0.48429349064826965,
2527
+ "learning_rate": 1.6577541474757712e-06,
2528
+ "loss": 0.2709,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 1.4932781799379524,
2533
+ "grad_norm": 0.49429482221603394,
2534
+ "learning_rate": 1.6322689432205252e-06,
2535
+ "loss": 0.2787,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 1.4974146845915202,
2540
+ "grad_norm": 0.487251341342926,
2541
+ "learning_rate": 1.6069428876438203e-06,
2542
+ "loss": 0.2612,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 1.501551189245088,
2547
+ "grad_norm": 0.4490973949432373,
2548
+ "learning_rate": 1.5817771775776508e-06,
2549
+ "loss": 0.2516,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 1.5056876938986556,
2554
+ "grad_norm": 0.48428958654403687,
2555
+ "learning_rate": 1.5567730022765753e-06,
2556
+ "loss": 0.2773,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 1.5098241985522234,
2561
+ "grad_norm": 0.4671989381313324,
2562
+ "learning_rate": 1.5319315433615101e-06,
2563
+ "loss": 0.267,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 1.5139607032057911,
2568
+ "grad_norm": 0.5202347636222839,
2569
+ "learning_rate": 1.5072539747638887e-06,
2570
+ "loss": 0.294,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 1.5180972078593589,
2575
+ "grad_norm": 0.45074182748794556,
2576
+ "learning_rate": 1.482741462670193e-06,
2577
+ "loss": 0.2363,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 1.5222337125129266,
2582
+ "grad_norm": 0.5174707174301147,
2583
+ "learning_rate": 1.4583951654668416e-06,
2584
+ "loss": 0.2767,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 1.5263702171664943,
2589
+ "grad_norm": 0.4842411279678345,
2590
+ "learning_rate": 1.434216233685441e-06,
2591
+ "loss": 0.2858,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 1.530506721820062,
2596
+ "grad_norm": 0.4314868450164795,
2597
+ "learning_rate": 1.4102058099484188e-06,
2598
+ "loss": 0.2356,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 1.5346432264736298,
2603
+ "grad_norm": 0.47764474153518677,
2604
+ "learning_rate": 1.3863650289150338e-06,
2605
+ "loss": 0.2632,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 1.5387797311271976,
2610
+ "grad_norm": 0.4491686522960663,
2611
+ "learning_rate": 1.3626950172277398e-06,
2612
+ "loss": 0.2443,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 1.542916235780765,
2617
+ "grad_norm": 0.4948718249797821,
2618
+ "learning_rate": 1.3391968934589573e-06,
2619
+ "loss": 0.2772,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 1.5470527404343328,
2624
+ "grad_norm": 0.4696827828884125,
2625
+ "learning_rate": 1.3158717680582128e-06,
2626
+ "loss": 0.2568,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 1.5511892450879006,
2631
+ "grad_norm": 0.43921521306037903,
2632
+ "learning_rate": 1.292720743299654e-06,
2633
+ "loss": 0.229,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 1.5553257497414683,
2638
+ "grad_norm": 0.4529230296611786,
2639
+ "learning_rate": 1.2697449132299649e-06,
2640
+ "loss": 0.2445,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 1.559462254395036,
2645
+ "grad_norm": 0.4936879873275757,
2646
+ "learning_rate": 1.2469453636166645e-06,
2647
+ "loss": 0.2579,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 1.5635987590486038,
2652
+ "grad_norm": 0.48198625445365906,
2653
+ "learning_rate": 1.224323171896797e-06,
2654
+ "loss": 0.2542,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 1.5677352637021715,
2659
+ "grad_norm": 0.4886031448841095,
2660
+ "learning_rate": 1.201879407126012e-06,
2661
+ "loss": 0.2707,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 1.5718717683557393,
2666
+ "grad_norm": 0.47718653082847595,
2667
+ "learning_rate": 1.1796151299280483e-06,
2668
+ "loss": 0.2747,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 1.576008273009307,
2673
+ "grad_norm": 0.46224093437194824,
2674
+ "learning_rate": 1.1575313924446123e-06,
2675
+ "loss": 0.247,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 1.5801447776628748,
2680
+ "grad_norm": 0.4610908329486847,
2681
+ "learning_rate": 1.1356292382856531e-06,
2682
+ "loss": 0.2624,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 1.5842812823164425,
2687
+ "grad_norm": 0.46388930082321167,
2688
+ "learning_rate": 1.113909702480046e-06,
2689
+ "loss": 0.2485,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 1.5884177869700102,
2694
+ "grad_norm": 0.4562687575817108,
2695
+ "learning_rate": 1.0923738114266824e-06,
2696
+ "loss": 0.2503,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 1.592554291623578,
2701
+ "grad_norm": 0.44876885414123535,
2702
+ "learning_rate": 1.0710225828459642e-06,
2703
+ "loss": 0.2453,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 1.5966907962771457,
2708
+ "grad_norm": 0.45502784848213196,
2709
+ "learning_rate": 1.0498570257317075e-06,
2710
+ "loss": 0.2595,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 1.6008273009307135,
2715
+ "grad_norm": 0.47724854946136475,
2716
+ "learning_rate": 1.028878140303462e-06,
2717
+ "loss": 0.2541,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 1.6049638055842812,
2722
+ "grad_norm": 0.45897573232650757,
2723
+ "learning_rate": 1.008086917959249e-06,
2724
+ "loss": 0.2628,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 1.609100310237849,
2729
+ "grad_norm": 0.4865526258945465,
2730
+ "learning_rate": 9.874843412286994e-07,
2731
+ "loss": 0.2693,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 1.6132368148914167,
2736
+ "grad_norm": 0.46964144706726074,
2737
+ "learning_rate": 9.670713837266322e-07,
2738
+ "loss": 0.2498,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 1.6173733195449844,
2743
+ "grad_norm": 0.42305079102516174,
2744
+ "learning_rate": 9.46849010107041e-07,
2745
+ "loss": 0.2262,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 1.6215098241985522,
2750
+ "grad_norm": 0.4819132089614868,
2751
+ "learning_rate": 9.26818176017506e-07,
2752
+ "loss": 0.2617,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 1.62564632885212,
2757
+ "grad_norm": 0.4843488037586212,
2758
+ "learning_rate": 9.069798280540348e-07,
2759
+ "loss": 0.2636,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 1.6297828335056876,
2764
+ "grad_norm": 0.4789119064807892,
2765
+ "learning_rate": 8.87334903716332e-07,
2766
+ "loss": 0.2869,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 1.6339193381592554,
2771
+ "grad_norm": 0.42331403493881226,
2772
+ "learning_rate": 8.678843313634894e-07,
2773
+ "loss": 0.2192,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 1.6380558428128231,
2778
+ "grad_norm": 0.45914411544799805,
2779
+ "learning_rate": 8.486290301701183e-07,
2780
+ "loss": 0.2654,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 1.6421923474663909,
2785
+ "grad_norm": 0.4775830805301666,
2786
+ "learning_rate": 8.295699100829124e-07,
2787
+ "loss": 0.2434,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 1.6463288521199586,
2792
+ "grad_norm": 0.5007808804512024,
2793
+ "learning_rate": 8.107078717776457e-07,
2794
+ "loss": 0.2697,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 1.6504653567735263,
2799
+ "grad_norm": 0.4754742681980133,
2800
+ "learning_rate": 7.920438066166097e-07,
2801
+ "loss": 0.2626,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 1.654601861427094,
2806
+ "grad_norm": 0.46346259117126465,
2807
+ "learning_rate": 7.735785966064885e-07,
2808
+ "loss": 0.2268,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 1.6587383660806618,
2813
+ "grad_norm": 0.4413525462150574,
2814
+ "learning_rate": 7.553131143566822e-07,
2815
+ "loss": 0.2373,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 1.6628748707342296,
2820
+ "grad_norm": 0.447625994682312,
2821
+ "learning_rate": 7.372482230380657e-07,
2822
+ "loss": 0.2546,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 1.6670113753877973,
2827
+ "grad_norm": 0.4605792462825775,
2828
+ "learning_rate": 7.193847763421991e-07,
2829
+ "loss": 0.2656,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 1.671147880041365,
2834
+ "grad_norm": 0.4576088786125183,
2835
+ "learning_rate": 7.017236184409859e-07,
2836
+ "loss": 0.2576,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 1.6752843846949328,
2841
+ "grad_norm": 0.5075780153274536,
2842
+ "learning_rate": 6.842655839467787e-07,
2843
+ "loss": 0.3023,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 1.6794208893485005,
2848
+ "grad_norm": 0.4650248885154724,
2849
+ "learning_rate": 6.670114978729392e-07,
2850
+ "loss": 0.2753,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 1.6835573940020683,
2855
+ "grad_norm": 0.4480326175689697,
2856
+ "learning_rate": 6.499621755948487e-07,
2857
+ "loss": 0.2448,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 1.687693898655636,
2862
+ "grad_norm": 0.48435285687446594,
2863
+ "learning_rate": 6.331184228113801e-07,
2864
+ "loss": 0.2729,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 1.6918304033092038,
2869
+ "grad_norm": 0.4679297208786011,
2870
+ "learning_rate": 6.164810355068179e-07,
2871
+ "loss": 0.2394,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 1.6959669079627715,
2876
+ "grad_norm": 0.5232973694801331,
2877
+ "learning_rate": 6.000507999132444e-07,
2878
+ "loss": 0.2761,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 1.7001034126163392,
2883
+ "grad_norm": 0.43717169761657715,
2884
+ "learning_rate": 5.838284924733866e-07,
2885
+ "loss": 0.2476,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 1.704239917269907,
2890
+ "grad_norm": 0.4989730417728424,
2891
+ "learning_rate": 5.678148798039213e-07,
2892
+ "loss": 0.2723,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 1.7083764219234747,
2897
+ "grad_norm": 0.4776909649372101,
2898
+ "learning_rate": 5.520107186592477e-07,
2899
+ "loss": 0.2394,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 1.7125129265770425,
2904
+ "grad_norm": 0.49704718589782715,
2905
+ "learning_rate": 5.364167558957267e-07,
2906
+ "loss": 0.2674,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 1.7166494312306102,
2911
+ "grad_norm": 0.5080196857452393,
2912
+ "learning_rate": 5.210337284363876e-07,
2913
+ "loss": 0.2846,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 1.720785935884178,
2918
+ "grad_norm": 0.5011091828346252,
2919
+ "learning_rate": 5.058623632361004e-07,
2920
+ "loss": 0.276,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 1.7249224405377457,
2925
+ "grad_norm": 0.4899991750717163,
2926
+ "learning_rate": 4.909033772472204e-07,
2927
+ "loss": 0.2465,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 1.7290589451913134,
2932
+ "grad_norm": 0.47677579522132874,
2933
+ "learning_rate": 4.7615747738571636e-07,
2934
+ "loss": 0.2547,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 1.7331954498448812,
2939
+ "grad_norm": 0.4679698050022125,
2940
+ "learning_rate": 4.6162536049775387e-07,
2941
+ "loss": 0.2687,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 1.737331954498449,
2946
+ "grad_norm": 0.4611322283744812,
2947
+ "learning_rate": 4.473077133267684e-07,
2948
+ "loss": 0.2517,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 1.7414684591520166,
2953
+ "grad_norm": 0.45688915252685547,
2954
+ "learning_rate": 4.3320521248101487e-07,
2955
+ "loss": 0.2449,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 1.7456049638055844,
2960
+ "grad_norm": 0.44202756881713867,
2961
+ "learning_rate": 4.193185244015879e-07,
2962
+ "loss": 0.2274,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 1.7497414684591521,
2967
+ "grad_norm": 0.488298237323761,
2968
+ "learning_rate": 4.0564830533093014e-07,
2969
+ "loss": 0.2706,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 1.7538779731127199,
2974
+ "grad_norm": 0.44502395391464233,
2975
+ "learning_rate": 3.9219520128182087e-07,
2976
+ "loss": 0.2343,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 1.7580144777662876,
2981
+ "grad_norm": 0.4559187889099121,
2982
+ "learning_rate": 3.789598480068479e-07,
2983
+ "loss": 0.2477,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 1.7621509824198553,
2988
+ "grad_norm": 0.43528175354003906,
2989
+ "learning_rate": 3.659428709683621e-07,
2990
+ "loss": 0.2279,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 1.766287487073423,
2995
+ "grad_norm": 0.47880756855010986,
2996
+ "learning_rate": 3.531448853089192e-07,
2997
+ "loss": 0.2631,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 1.7704239917269908,
3002
+ "grad_norm": 0.49789199233055115,
3003
+ "learning_rate": 3.40566495822216e-07,
3004
+ "loss": 0.2925,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 1.7745604963805586,
3009
+ "grad_norm": 0.4378401041030884,
3010
+ "learning_rate": 3.2820829692449984e-07,
3011
+ "loss": 0.227,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 1.7786970010341263,
3016
+ "grad_norm": 0.4724928140640259,
3017
+ "learning_rate": 3.160708726264855e-07,
3018
+ "loss": 0.2657,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 1.782833505687694,
3023
+ "grad_norm": 0.43662911653518677,
3024
+ "learning_rate": 3.0415479650575783e-07,
3025
+ "loss": 0.2399,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 1.7869700103412618,
3030
+ "grad_norm": 0.46386146545410156,
3031
+ "learning_rate": 2.9246063167965963e-07,
3032
+ "loss": 0.2447,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 1.7911065149948295,
3037
+ "grad_norm": 0.47366079688072205,
3038
+ "learning_rate": 2.809889307786856e-07,
3039
+ "loss": 0.2449,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 1.795243019648397,
3044
+ "grad_norm": 0.4846685826778412,
3045
+ "learning_rate": 2.697402359203638e-07,
3046
+ "loss": 0.2559,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 1.7993795243019648,
3051
+ "grad_norm": 0.4788161516189575,
3052
+ "learning_rate": 2.587150786836407e-07,
3053
+ "loss": 0.2749,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 1.8035160289555325,
3058
+ "grad_norm": 0.49820560216903687,
3059
+ "learning_rate": 2.4791398008375545e-07,
3060
+ "loss": 0.2748,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 1.8076525336091003,
3065
+ "grad_norm": 0.45833131670951843,
3066
+ "learning_rate": 2.3733745054762059e-07,
3067
+ "loss": 0.2293,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 1.811789038262668,
3072
+ "grad_norm": 0.5000050067901611,
3073
+ "learning_rate": 2.2698598988970422e-07,
3074
+ "loss": 0.2634,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 1.8159255429162358,
3079
+ "grad_norm": 0.45837461948394775,
3080
+ "learning_rate": 2.1686008728840301e-07,
3081
+ "loss": 0.2525,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 1.8200620475698035,
3086
+ "grad_norm": 0.4396543800830841,
3087
+ "learning_rate": 2.0696022126293126e-07,
3088
+ "loss": 0.2374,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 1.8241985522233712,
3093
+ "grad_norm": 0.4914761483669281,
3094
+ "learning_rate": 1.9728685965070604e-07,
3095
+ "loss": 0.2992,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 1.828335056876939,
3100
+ "grad_norm": 0.5126286745071411,
3101
+ "learning_rate": 1.8784045958523623e-07,
3102
+ "loss": 0.2795,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 1.8324715615305067,
3107
+ "grad_norm": 0.44213420152664185,
3108
+ "learning_rate": 1.786214674745218e-07,
3109
+ "loss": 0.2247,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 1.8366080661840745,
3114
+ "grad_norm": 0.4569559693336487,
3115
+ "learning_rate": 1.6963031897995863e-07,
3116
+ "loss": 0.2451,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 1.8407445708376422,
3121
+ "grad_norm": 0.4845653474330902,
3122
+ "learning_rate": 1.6086743899575042e-07,
3123
+ "loss": 0.2818,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 1.84488107549121,
3128
+ "grad_norm": 0.4564604163169861,
3129
+ "learning_rate": 1.523332416288259e-07,
3130
+ "loss": 0.2539,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 1.8490175801447777,
3135
+ "grad_norm": 0.4548117518424988,
3136
+ "learning_rate": 1.4402813017927396e-07,
3137
+ "loss": 0.2554,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 1.8531540847983454,
3142
+ "grad_norm": 0.4759480655193329,
3143
+ "learning_rate": 1.3595249712128334e-07,
3144
+ "loss": 0.2661,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 1.8572905894519132,
3149
+ "grad_norm": 0.46541112661361694,
3150
+ "learning_rate": 1.28106724084594e-07,
3151
+ "loss": 0.2486,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 1.861427094105481,
3156
+ "grad_norm": 0.4635773003101349,
3157
+ "learning_rate": 1.2049118183646403e-07,
3158
+ "loss": 0.2653,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 1.8655635987590486,
3163
+ "grad_norm": 0.44061151146888733,
3164
+ "learning_rate": 1.1310623026414891e-07,
3165
+ "loss": 0.2255,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 1.8697001034126164,
3170
+ "grad_norm": 0.45572927594184875,
3171
+ "learning_rate": 1.059522183578926e-07,
3172
+ "loss": 0.2533,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 1.8738366080661841,
3177
+ "grad_norm": 0.4822574853897095,
3178
+ "learning_rate": 9.902948419443669e-08,
3179
+ "loss": 0.2767,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 1.8779731127197516,
3184
+ "grad_norm": 0.4398654103279114,
3185
+ "learning_rate": 9.233835492104326e-08,
3186
+ "loss": 0.2492,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 1.8821096173733194,
3191
+ "grad_norm": 0.4548628032207489,
3192
+ "learning_rate": 8.587914674003384e-08,
3193
+ "loss": 0.254,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 1.8862461220268871,
3198
+ "grad_norm": 0.45040181279182434,
3199
+ "learning_rate": 7.965216489384919e-08,
3200
+ "loss": 0.2721,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 1.8903826266804549,
3205
+ "grad_norm": 0.47080284357070923,
3206
+ "learning_rate": 7.365770365062308e-08,
3207
+ "loss": 0.2718,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 1.8945191313340226,
3212
+ "grad_norm": 0.48404160141944885,
3213
+ "learning_rate": 6.789604629027614e-08,
3214
+ "loss": 0.2924,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 1.8986556359875904,
3219
+ "grad_norm": 0.46306654810905457,
3220
+ "learning_rate": 6.236746509112824e-08,
3221
+ "loss": 0.2531,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 1.902792140641158,
3226
+ "grad_norm": 0.4330954849720001,
3227
+ "learning_rate": 5.707222131703216e-08,
3228
+ "loss": 0.2388,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 1.9069286452947258,
3233
+ "grad_norm": 0.46021175384521484,
3234
+ "learning_rate": 5.201056520502734e-08,
3235
+ "loss": 0.2468,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 1.9110651499482936,
3240
+ "grad_norm": 0.5022516250610352,
3241
+ "learning_rate": 4.718273595351486e-08,
3242
+ "loss": 0.263,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 1.9152016546018613,
3247
+ "grad_norm": 0.47739377617836,
3248
+ "learning_rate": 4.25889617109515e-08,
3249
+ "loss": 0.2718,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 1.919338159255429,
3254
+ "grad_norm": 0.4588397741317749,
3255
+ "learning_rate": 3.8229459565070074e-08,
3256
+ "loss": 0.2412,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 1.9234746639089968,
3261
+ "grad_norm": 0.4719136953353882,
3262
+ "learning_rate": 3.410443553262033e-08,
3263
+ "loss": 0.2722,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 1.9276111685625645,
3268
+ "grad_norm": 0.4567975401878357,
3269
+ "learning_rate": 3.0214084549632925e-08,
3270
+ "loss": 0.2536,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 1.9317476732161323,
3275
+ "grad_norm": 0.4981779158115387,
3276
+ "learning_rate": 2.6558590462207322e-08,
3277
+ "loss": 0.27,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 1.9358841778697,
3282
+ "grad_norm": 0.4779011309146881,
3283
+ "learning_rate": 2.3138126017822614e-08,
3284
+ "loss": 0.2707,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 1.9400206825232678,
3289
+ "grad_norm": 0.4619957506656647,
3290
+ "learning_rate": 1.99528528571763e-08,
3291
+ "loss": 0.2516,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 1.9441571871768355,
3296
+ "grad_norm": 0.47019270062446594,
3297
+ "learning_rate": 1.7002921506544812e-08,
3298
+ "loss": 0.2762,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 1.9482936918304032,
3303
+ "grad_norm": 0.48734498023986816,
3304
+ "learning_rate": 1.4288471370669244e-08,
3305
+ "loss": 0.2779,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 1.952430196483971,
3310
+ "grad_norm": 0.5020056366920471,
3311
+ "learning_rate": 1.1809630726167808e-08,
3312
+ "loss": 0.2731,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 1.9565667011375387,
3317
+ "grad_norm": 0.4687701165676117,
3318
+ "learning_rate": 9.566516715474594e-09,
3319
+ "loss": 0.2584,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 1.9607032057911065,
3324
+ "grad_norm": 0.4735799729824066,
3325
+ "learning_rate": 7.559235341302872e-09,
3326
+ "loss": 0.2663,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 1.9648397104446742,
3331
+ "grad_norm": 0.4657973349094391,
3332
+ "learning_rate": 5.787881461636891e-09,
3333
+ "loss": 0.2597,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 1.968976215098242,
3338
+ "grad_norm": 0.43754643201828003,
3339
+ "learning_rate": 4.252538785248228e-09,
3340
+ "loss": 0.2198,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 1.9731127197518097,
3345
+ "grad_norm": 0.45479777455329895,
3346
+ "learning_rate": 2.9532798677395226e-09,
3347
+ "loss": 0.2456,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 1.9772492244053774,
3352
+ "grad_norm": 0.4745938181877136,
3353
+ "learning_rate": 1.8901661081172084e-09,
3354
+ "loss": 0.2719,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 1.9813857290589452,
3359
+ "grad_norm": 0.4496646225452423,
3360
+ "learning_rate": 1.0632477458888401e-09,
3361
+ "loss": 0.2545,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 1.985522233712513,
3366
+ "grad_norm": 0.5044782757759094,
3367
+ "learning_rate": 4.725638586894344e-10,
3368
+ "loss": 0.2904,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 1.9896587383660806,
3373
+ "grad_norm": 0.45781707763671875,
3374
+ "learning_rate": 1.1814236043405924e-10,
3375
+ "loss": 0.2429,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 1.9937952430196484,
3380
+ "grad_norm": 0.4693934917449951,
3381
+ "learning_rate": 0.0,
3382
+ "loss": 0.2602,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 1.9937952430196484,
3387
+ "step": 482,
3388
+ "total_flos": 3.6089290785072087e+18,
3389
+ "train_loss": 0.3119487636316861,
3390
+ "train_runtime": 2571.753,
3391
+ "train_samples_per_second": 24.051,
3392
+ "train_steps_per_second": 0.187
3393
+ }
3394
+ ],
3395
+ "logging_steps": 1,
3396
+ "max_steps": 482,
3397
+ "num_input_tokens_seen": 0,
3398
+ "num_train_epochs": 2,
3399
+ "save_steps": 1000,
3400
+ "stateful_callbacks": {
3401
+ "TrainerControl": {
3402
+ "args": {
3403
+ "should_epoch_stop": false,
3404
+ "should_evaluate": false,
3405
+ "should_log": false,
3406
+ "should_save": true,
3407
+ "should_training_stop": true
3408
+ },
3409
+ "attributes": {}
3410
+ }
3411
+ },
3412
+ "total_flos": 3.6089290785072087e+18,
3413
+ "train_batch_size": 4,
3414
+ "trial_name": null,
3415
+ "trial_params": null
3416
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d98d9cd2eedc86e7156c05455d96e638d997b565b9c01d1193d728b0508fc90f
3
+ size 6712
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff