File size: 1,802 Bytes
c07879e 45d68d3 c07879e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
metrics:
- wer
model-index:
- name: openai/whisper-small
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: myst-test
type: asr
config: en
split: test
metrics:
- type: wer
value: 11.80
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: cslu_scripted
type: asr
config: en
split: test
metrics:
- type: wer
value: 55.51
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: cslu_spontaneous
type: asr
config: en
split: test
metrics:
- type: wer
value: 28.53
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: librispeech
type: asr
config: en
split: testclean
metrics:
- type: wer
value: 6.23
name: WER
---
# openai/whisper-small
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.26971688866615295
- Wer: 8.508066331024994
## Training and evaluation data
- Training data: Myst Train (125 hours)
- Evaluation data: Myst Dev (20.9 hours)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- converged_after: 2500
|