--- license: apache-2.0 metrics: - wer model-index: - name: openai/whisper-small results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: myst-test type: asr config: en split: test metrics: - type: wer value: 11.80 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: cslu_scripted type: asr config: en split: test metrics: - type: wer value: 55.51 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: cslu_spontaneous type: asr config: en split: test metrics: - type: wer value: 28.53 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: librispeech type: asr config: en split: testclean metrics: - type: wer value: 6.23 name: WER --- # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.26971688866615295 - Wer: 8.508066331024994 ## Training and evaluation data - Training data: Myst Train (125 hours) - Evaluation data: Myst Dev (20.9 hours) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000