--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-small-en results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: myst-test type: asr config: en split: test metrics: - type: wer value: 12.11 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: cslu_scripted type: asr config: en split: test metrics: - type: wer value: 2.74 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: cslu_spontaneous type: asr config: en split: test metrics: - type: wer value: 32.72 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: librispeech type: asr config: en split: testclean metrics: - type: wer value: 7.97 name: WER --- # openai/whisper-small-en This model is a fine-tuned version of [openai/whisper-small-en](https://huggingface.co/openai/whisper-small-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.24359586834907532 - Wer: 8.182209008725348 ## Training and evaluation data Training data: Myst Train (125 hours) + CSLU Scripted train (35 hours) Evaluation data: Myst Dev (20.9 hours) + CSLU Scripted Dev(4.8) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000