--- license: mit base_model: ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa tags: - generated_from_keras_callback model-index: - name: aadhistii/tsel-finetune-bert-base-indonesian-1.5G-sentiment-analysis-smsa results: [] --- # aadhistii/tsel-finetune-bert-base-indonesian-1.5G-sentiment-analysis-smsa This model is a fine-tuned version of [ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/bert-base-indonesian-1.5G-sentiment-analysis-smsa) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0177 - Validation Loss: 1.3858 - Train Accuracy: 0.6712 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 730, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.3087 | 0.8960 | 0.6336 | 0 | | 0.7406 | 0.9109 | 0.6199 | 1 | | 0.5737 | 0.8554 | 0.6473 | 2 | | 0.3301 | 0.9670 | 0.6473 | 3 | | 0.1785 | 1.0983 | 0.6712 | 4 | | 0.0729 | 1.2668 | 0.6678 | 5 | | 0.0481 | 1.3972 | 0.6541 | 6 | | 0.0293 | 1.3686 | 0.6712 | 7 | | 0.0255 | 1.3980 | 0.6644 | 8 | | 0.0177 | 1.3858 | 0.6712 | 9 | ### Framework versions - Transformers 4.42.3 - TensorFlow 2.15.0 - Datasets 2.20.0 - Tokenizers 0.19.1