jonathanagustin commited on
Commit
c799181
1 Parent(s): bd9e096

Model save

Browse files
Files changed (3) hide show
  1. README.md +128 -277
  2. metrics.json +3 -3
  3. trainer_state.json +7 -7
README.md CHANGED
@@ -1,281 +1,132 @@
1
  ---
2
- language: en
3
- license: mit
4
- model_details: "\n ## Abstract\n This model, 'distilbert-finetuned-uncased',\
5
- \ is a question-answering chatbot trained on the SQuAD dataset, demonstrating competency\
6
- \ in building conversational AI using recent advances in natural language processing.\
7
- \ It utilizes a BERT model fine-tuned for extractive question answering.\n\n \
8
- \ ## Data Collection and Preprocessing\n The model was trained on the\
9
- \ Stanford Question Answering Dataset (SQuAD), which contains over 100,000 question-answer\
10
- \ pairs based on Wikipedia articles. The data preprocessing involved tokenizing\
11
- \ context paragraphs and questions, truncating sequences to fit BERT's max length,\
12
- \ and adding special tokens to mark question and paragraph segments.\n\n \
13
- \ ## Model Architecture and Training\n The architecture is based on the BERT\
14
- \ transformer model, which was pretrained on large unlabeled text corpora. For this\
15
- \ project, the BERT base model was fine-tuned on SQuAD for extractive question answering,\
16
- \ with additional output layers for predicting the start and end indices of the\
17
- \ answer span.\n\n ## SQuAD 2.0 Dataset\n SQuAD 2.0 combines the existing\
18
- \ SQuAD data with over 50,000 unanswerable questions written adversarially by crowdworkers\
19
- \ to look similar to answerable ones. This version of the dataset challenges models\
20
- \ to not only produce answers when possible but also determine when no answer is\
21
- \ supported by the paragraph and abstain from answering.\n "
22
- intended_use: "\n - Answering questions from the squad_v2 dataset.\n \
23
- \ - Developing question-answering systems within the scope of the aai520-project.\n\
24
- \ - Research and experimentation in the NLP question-answering domain.\n\
25
- \ "
26
- limitations_and_bias: "\n The model inherits limitations and biases from the\
27
- \ 'distilbert-base-uncased' model, as it was trained on the same foundational data.\n\
28
- \ It may underperform on questions that are ambiguous or too far outside\
29
- \ the scope of the topics covered in the squad_v2 dataset.\n Additionally,\
30
- \ the model may reflect societal biases present in its training data.\n "
31
- ethical_considerations: "\n This model should not be used for making critical\
32
- \ decisions without human oversight,\n as it can generate incorrect or biased\
33
- \ answers, especially for topics not covered in the training data.\n Users\
34
- \ should also consider the ethical implications of using AI in decision-making processes\
35
- \ and the potential for perpetuating biases.\n "
36
- evaluation: "\n The model was evaluated on the squad_v2 dataset using various\
37
- \ metrics. These metrics, along with their corresponding scores,\n are detailed\
38
- \ in the 'eval_results' section. The evaluation process ensured a comprehensive\
39
- \ assessment of the model's performance\n in question-answering scenarios.\n\
40
- \ "
41
- training: "\n The model was trained over 10 epochs with a learning rate of\
42
- \ 2e-05, using a batch size of 64.\n The training utilized a cross-entropy\
43
- \ loss function and the AdamW optimizer, with gradient accumulation over 4 steps.\n\
44
- \ "
45
- tips_and_tricks: "\n For optimal performance, questions should be clear, concise,\
46
- \ and grammatically correct.\n The model performs best on questions related\
47
- \ to topics covered in the squad_v2 dataset.\n It is advisable to pre-process\
48
- \ text for consistency in encoding and punctuation, and to manage expectations for\
49
- \ questions on topics outside the training data.\n "
50
  model-index:
51
- - name: distilbert-finetuned-uncased
52
- results:
53
- - task:
54
- type: question-answering
55
- dataset:
56
- name: SQuAD v2
57
- type: squad_v2
58
- metrics:
59
- - type: Exact
60
- value: 100.0
61
- - type: F1
62
- value: 100.0
63
- - type: Total
64
- value: 2
65
- - type: Hasans Exact
66
- value: 100.0
67
- - type: Hasans F1
68
- value: 100.0
69
- - type: Hasans Total
70
- value: 2
71
- - type: Best Exact
72
- value: 100.0
73
- - type: Best Exact Thresh
74
- value: 0.967875599861145
75
- - type: Best F1
76
- value: 100.0
77
- - type: Best F1 Thresh
78
- value: 0.967875599861145
79
- - type: Total Time In Seconds
80
- value: 0.02787837800019588
81
- - type: Samples Per Second
82
- value: 71.74018517095749
83
- - type: Latency In Seconds
84
- value: 0.01393918900009794
85
  ---
86
 
87
- # Model Card for Model ID
88
-
89
- <!-- Provide a quick summary of what the model is/does. -->
90
-
91
-
92
-
93
- ## Model Details
94
-
95
- ### Model Description
96
-
97
- <!-- Provide a longer summary of what this model is. -->
98
-
99
-
100
-
101
- - **Developed by:** [More Information Needed]
102
- - **Shared by [optional]:** [More Information Needed]
103
- - **Model type:** [More Information Needed]
104
- - **Language(s) (NLP):** en
105
- - **License:** mit
106
- - **Finetuned from model [optional]:** [More Information Needed]
107
-
108
- ### Model Sources [optional]
109
-
110
- <!-- Provide the basic links for the model. -->
111
-
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
-
116
- ## Uses
117
-
118
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
119
-
120
- ### Direct Use
121
-
122
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Downstream Use [optional]
127
-
128
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
129
-
130
- [More Information Needed]
131
-
132
- ### Out-of-Scope Use
133
-
134
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Bias, Risks, and Limitations
139
-
140
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
141
-
142
- [More Information Needed]
143
-
144
- ### Recommendations
145
-
146
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
147
-
148
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
149
-
150
- ## How to Get Started with the Model
151
-
152
- Use the code below to get started with the model.
153
-
154
- [More Information Needed]
155
-
156
- ## Training Details
157
-
158
- ### Training Data
159
-
160
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
161
-
162
- [More Information Needed]
163
-
164
- ### Training Procedure
165
-
166
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
167
-
168
- #### Preprocessing [optional]
169
-
170
- [More Information Needed]
171
-
172
-
173
- #### Training Hyperparameters
174
-
175
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
176
-
177
- #### Speeds, Sizes, Times [optional]
178
-
179
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
180
-
181
- [More Information Needed]
182
-
183
- ## Evaluation
184
-
185
- <!-- This section describes the evaluation protocols and provides the results. -->
186
-
187
- ### Testing Data, Factors & Metrics
188
-
189
- #### Testing Data
190
-
191
- <!-- This should link to a Data Card if possible. -->
192
-
193
- [More Information Needed]
194
-
195
- #### Factors
196
-
197
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
198
-
199
- [More Information Needed]
200
-
201
- #### Metrics
202
-
203
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
204
-
205
- [More Information Needed]
206
-
207
- ### Results
208
-
209
- [More Information Needed]
210
-
211
- #### Summary
212
-
213
-
214
-
215
- ## Model Examination [optional]
216
-
217
- <!-- Relevant interpretability work for the model goes here -->
218
-
219
- [More Information Needed]
220
-
221
- ## Environmental Impact
222
-
223
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
224
-
225
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
226
-
227
- - **Hardware Type:** [More Information Needed]
228
- - **Hours used:** [More Information Needed]
229
- - **Cloud Provider:** [More Information Needed]
230
- - **Compute Region:** [More Information Needed]
231
- - **Carbon Emitted:** [More Information Needed]
232
-
233
- ## Technical Specifications [optional]
234
-
235
- ### Model Architecture and Objective
236
-
237
- [More Information Needed]
238
-
239
- ### Compute Infrastructure
240
-
241
- [More Information Needed]
242
-
243
- #### Hardware
244
-
245
- [More Information Needed]
246
-
247
- #### Software
248
-
249
- [More Information Needed]
250
-
251
- ## Citation [optional]
252
-
253
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
254
-
255
- **BibTeX:**
256
-
257
- [More Information Needed]
258
-
259
- **APA:**
260
-
261
- [More Information Needed]
262
-
263
- ## Glossary [optional]
264
-
265
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
266
-
267
- [More Information Needed]
268
-
269
- ## More Information [optional]
270
-
271
- [More Information Needed]
272
-
273
- ## Model Card Authors [optional]
274
-
275
- [More Information Needed]
276
-
277
- ## Model Card Contact
278
-
279
- [More Information Needed]
280
-
281
-
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - squad_v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  model-index:
7
+ - name: distilbert-finetuned-uncased-squad_v2
8
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # distilbert-finetuned-uncased-squad_v2
15
+
16
+ This model was trained from scratch on the squad_v2 dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.2617
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-05
38
+ - train_batch_size: 64
39
+ - eval_batch_size: 64
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 256
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 3.6437 | 0.39 | 100 | 2.1780 |
52
+ | 2.1596 | 0.78 | 200 | 1.6557 |
53
+ | 1.8138 | 1.18 | 300 | 1.5683 |
54
+ | 1.6987 | 1.57 | 400 | 1.5076 |
55
+ | 1.6586 | 1.96 | 500 | 1.5350 |
56
+ | 1.5957 | 1.18 | 600 | 1.4431 |
57
+ | 1.5825 | 1.37 | 700 | 1.4955 |
58
+ | 1.5523 | 1.57 | 800 | 1.4444 |
59
+ | 1.5346 | 1.76 | 900 | 1.3930 |
60
+ | 1.5098 | 1.96 | 1000 | 1.4285 |
61
+ | 1.4632 | 2.16 | 1100 | 1.3630 |
62
+ | 1.4468 | 2.35 | 1200 | 1.3710 |
63
+ | 1.4343 | 2.55 | 1300 | 1.3422 |
64
+ | 1.4225 | 2.75 | 1400 | 1.3971 |
65
+ | 1.408 | 2.94 | 1500 | 1.4355 |
66
+ | 1.3609 | 3.14 | 1600 | 1.3332 |
67
+ | 1.3398 | 3.33 | 1700 | 1.3792 |
68
+ | 1.3224 | 3.53 | 1800 | 1.4172 |
69
+ | 1.3152 | 3.73 | 1900 | 1.3956 |
70
+ | 1.3141 | 3.92 | 2000 | 1.3748 |
71
+ | 1.3085 | 2.06 | 2100 | 1.3949 |
72
+ | 1.3325 | 2.16 | 2200 | 1.4870 |
73
+ | 1.3162 | 2.26 | 2300 | 1.4565 |
74
+ | 1.2936 | 2.35 | 2400 | 1.4496 |
75
+ | 1.2648 | 2.45 | 2500 | 1.2868 |
76
+ | 1.2531 | 2.55 | 2600 | 1.5094 |
77
+ | 1.2599 | 2.65 | 2700 | 1.3451 |
78
+ | 1.2545 | 2.75 | 2800 | 1.4071 |
79
+ | 1.2461 | 2.84 | 2900 | 1.3378 |
80
+ | 1.2038 | 2.94 | 3000 | 1.2946 |
81
+ | 1.1677 | 3.04 | 3100 | 1.4802 |
82
+ | 1.103 | 3.14 | 3200 | 1.3580 |
83
+ | 1.1205 | 3.24 | 3300 | 1.3819 |
84
+ | 1.095 | 3.33 | 3400 | 1.4336 |
85
+ | 1.0896 | 3.43 | 3500 | 1.4963 |
86
+ | 1.0856 | 3.53 | 3600 | 1.3384 |
87
+ | 1.0652 | 3.63 | 3700 | 1.3583 |
88
+ | 1.0859 | 3.73 | 3800 | 1.4140 |
89
+ | 1.058 | 3.83 | 3900 | 1.2617 |
90
+ | 1.0724 | 3.92 | 4000 | 1.3552 |
91
+ | 1.0509 | 4.02 | 4100 | 1.2971 |
92
+ | 0.97 | 4.12 | 4200 | 1.3268 |
93
+ | 0.95 | 4.22 | 4300 | 1.3754 |
94
+ | 0.9337 | 4.32 | 4400 | 1.3687 |
95
+ | 0.977 | 4.41 | 4500 | 1.3613 |
96
+ | 0.9484 | 4.51 | 4600 | 1.5139 |
97
+ | 0.9739 | 4.61 | 4700 | 1.2861 |
98
+ | 0.955 | 4.71 | 4800 | 1.3667 |
99
+ | 0.9536 | 4.81 | 4900 | 1.3180 |
100
+ | 0.9541 | 4.9 | 5000 | 1.4611 |
101
+ | 0.9462 | 5.0 | 5100 | 1.4067 |
102
+ | 0.8728 | 5.1 | 5200 | 1.3490 |
103
+ | 0.8646 | 5.2 | 5300 | 1.4631 |
104
+ | 0.8683 | 5.3 | 5400 | 1.4978 |
105
+ | 0.8571 | 5.39 | 5500 | 1.5814 |
106
+ | 0.8475 | 5.49 | 5600 | 1.5535 |
107
+ | 0.8653 | 5.59 | 5700 | 1.4938 |
108
+ | 0.8664 | 5.69 | 5800 | 1.4141 |
109
+ | 0.889 | 5.79 | 5900 | 1.4487 |
110
+ | 0.8601 | 5.88 | 6000 | 1.4722 |
111
+ | 0.8645 | 5.98 | 6100 | 1.5843 |
112
+ | 0.785 | 6.08 | 6200 | 1.6028 |
113
+ | 0.7711 | 6.18 | 6300 | 1.6271 |
114
+ | 0.8056 | 6.28 | 6400 | 1.5399 |
115
+ | 0.8087 | 6.37 | 6500 | 1.4927 |
116
+ | 0.7859 | 6.47 | 6600 | 1.4677 |
117
+ | 0.7896 | 6.57 | 6700 | 1.4780 |
118
+ | 0.7971 | 6.67 | 6800 | 1.5110 |
119
+ | 0.7952 | 6.77 | 6900 | 1.5459 |
120
+ | 0.7971 | 6.87 | 7000 | 1.5282 |
121
+ | 0.7908 | 6.96 | 7100 | 1.4799 |
122
+ | 0.7456 | 7.06 | 7200 | 1.6487 |
123
+ | 0.7236 | 7.16 | 7300 | 1.6543 |
124
+ | 0.7484 | 7.26 | 7400 | 1.6202 |
125
+
126
+
127
+ ### Framework versions
128
+
129
+ - Transformers 4.34.1
130
+ - Pytorch 2.1.0+cu118
131
+ - Datasets 2.14.6
132
+ - Tokenizers 0.14.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
metrics.json CHANGED
@@ -9,7 +9,7 @@
9
  "best_exact_thresh": 0.967875599861145,
10
  "best_f1": 100.0,
11
  "best_f1_thresh": 0.967875599861145,
12
- "total_time_in_seconds": 0.03484977200002959,
13
- "samples_per_second": 57.389184640814925,
14
- "latency_in_seconds": 0.017424886000014794
15
  }
 
9
  "best_exact_thresh": 0.967875599861145,
10
  "best_f1": 100.0,
11
  "best_f1_thresh": 0.967875599861145,
12
+ "total_time_in_seconds": 0.02787837800019588,
13
+ "samples_per_second": 71.74018517095749,
14
+ "latency_in_seconds": 0.01393918900009794
15
  }
trainer_state.json CHANGED
@@ -1049,21 +1049,21 @@
1049
  "step": 7400,
1050
  "total_flos": 1.738708177538776e+17,
1051
  "train_loss": 0.0,
1052
- "train_runtime": 0.8545,
1053
- "train_samples_per_second": 1527321.888,
1054
- "train_steps_per_second": 2984.353
1055
  },
1056
  {
1057
  "epoch": 7.26,
1058
  "eval_loss": 1.261675477027893,
1059
- "eval_runtime": 63.4844,
1060
- "eval_samples_per_second": 188.535,
1061
- "eval_steps_per_second": 1.481,
1062
  "step": 7400
1063
  }
1064
  ],
1065
  "logging_steps": 100,
1066
- "max_steps": 2550,
1067
  "num_train_epochs": 10,
1068
  "save_steps": 100,
1069
  "total_flos": 1.738708177538776e+17,
 
1049
  "step": 7400,
1050
  "total_flos": 1.738708177538776e+17,
1051
  "train_loss": 0.0,
1052
+ "train_runtime": 0.6152,
1053
+ "train_samples_per_second": 2121277.112,
1054
+ "train_steps_per_second": 8289.858
1055
  },
1056
  {
1057
  "epoch": 7.26,
1058
  "eval_loss": 1.261675477027893,
1059
+ "eval_runtime": 63.7101,
1060
+ "eval_samples_per_second": 187.867,
1061
+ "eval_steps_per_second": 2.951,
1062
  "step": 7400
1063
  }
1064
  ],
1065
  "logging_steps": 100,
1066
+ "max_steps": 5100,
1067
  "num_train_epochs": 10,
1068
  "save_steps": 100,
1069
  "total_flos": 1.738708177538776e+17,