|
import pickle |
|
import numpy as np |
|
from flask import Flask, request, jsonify |
|
|
|
|
|
MODEL_PATH = "/mnt/data/model.pkl" |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
with open(MODEL_PATH, 'rb') as file: |
|
model = pickle.load(file) |
|
|
|
@app.route('/predict', methods=['POST']) |
|
def predict(): |
|
try: |
|
|
|
input_data = request.get_json() |
|
if not input_data: |
|
return jsonify({"error": "Invalid input data"}), 400 |
|
|
|
|
|
features = np.array(input_data['features']).reshape(1, -1) |
|
|
|
|
|
prediction = model.predict(features) |
|
|
|
|
|
return jsonify({"prediction": prediction.tolist()}), 200 |
|
except Exception as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
if __name__ == '__main__': |
|
app.run(host='0.0.0.0', port=5000) |
|
|