Create handler.py
Browse files- handler.py +62 -0
handler.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
# Load your model and scalers
|
6 |
+
model = pickle.load(open('model.pkl', 'rb'))
|
7 |
+
sc = pickle.load(open('standscaler.pkl', 'rb'))
|
8 |
+
ms = pickle.load(open('minmaxscaler.pkl', 'rb'))
|
9 |
+
|
10 |
+
# Title of the web app
|
11 |
+
st.title("Crop Recommendation System 🌱")
|
12 |
+
|
13 |
+
# Create a sidebar for input fields
|
14 |
+
with st.sidebar:
|
15 |
+
st.header("Input Parameters")
|
16 |
+
N = st.number_input("Nitrogen content", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter Nitrogen content")
|
17 |
+
P = st.number_input("Phosphorus content", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter Phosphorus content")
|
18 |
+
K = st.number_input("Potassium content", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter Potassium content")
|
19 |
+
temp = st.number_input("Temperature in °C", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter Temperature in °C")
|
20 |
+
humidity = st.number_input("Humidity in %", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter Humidity in %")
|
21 |
+
ph = st.number_input("pH value", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter pH value")
|
22 |
+
rainfall = st.number_input("Rainfall in mm", min_value=0.0, value=0.0, step=0.1, format="%.1f", help="Enter Rainfall in mm")
|
23 |
+
|
24 |
+
if st.button("Get Recommendation"):
|
25 |
+
feature_list = [N, P, K, temp, humidity, ph, rainfall]
|
26 |
+
single_pred = np.array(feature_list).reshape(1, -1)
|
27 |
+
|
28 |
+
scaled_features = ms.transform(single_pred)
|
29 |
+
final_features = sc.transform(scaled_features)
|
30 |
+
prediction = model.predict(final_features)
|
31 |
+
|
32 |
+
crop_dict = {1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut", 6: "Papaya", 7: "Orange",
|
33 |
+
8: "Apple", 9: "Muskmelon", 10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana",
|
34 |
+
14: "Pomegranate", 15: "Lentil", 16: "Blackgram", 17: "Mungbean", 18: "Mothbeans",
|
35 |
+
19: "Pigeonpeas", 20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"}
|
36 |
+
|
37 |
+
if prediction[0] in crop_dict:
|
38 |
+
crop = crop_dict[prediction[0]]
|
39 |
+
result = f"{crop} is the best crop to be cultivated right there."
|
40 |
+
else:
|
41 |
+
result = "Sorry, we could not determine the best crop to be cultivated with the provided data."
|
42 |
+
|
43 |
+
st.success(result)
|
44 |
+
|
45 |
+
# Footer
|
46 |
+
st.markdown("""
|
47 |
+
<style>
|
48 |
+
.footer {
|
49 |
+
position: fixed;
|
50 |
+
left: 0;
|
51 |
+
bottom: 0;
|
52 |
+
width: 100%;
|
53 |
+
background-color: #f1f1f1;
|
54 |
+
color: #555;
|
55 |
+
text-align: center;
|
56 |
+
padding: 10px;
|
57 |
+
}
|
58 |
+
</style>
|
59 |
+
<div class="footer">
|
60 |
+
Powered by Streamlit
|
61 |
+
</div>
|
62 |
+
""", unsafe_allow_html=True)
|