{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f307873dfc0>"}, "verbose": 0, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684605969020437004, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIVHPL8RLqe/kTGuv0ID275/mgg/nuAsv7Eyhz9JSAI93Tqsv5+RuTu+nOm+cQAHQMbbnT+nyce+o2K3Pr9p8b6FjGw/QqfAP9v2ND9rp3m/fS6SP+fjLj9ZsRG+fzEDP/6m1r8ROXrAIq89P2WGqj+OqZc+LeONP21qVD8IoCI/Dpn3vuuvGj+LkyG/BECPPqeMlj81sxU/3pJ3v+PTgL6ks/W/P2ITP/UuqT7j+ZC73XPwvrtsY786E56/SzSdPhWMub8e5Fk/dqOWPyHyRL/6pxg/ifSCPiKvPT/WKEC/0/EmQMOmnz/plFU/+dHCv7VzqT8c88o8zMnMP3xyvz9ZUgo+14GgOUq6XcC+Zu68ug2IvwN2LLySQj9A39rAPMHgfr7gEgu6t6uGQC4kBD0gxyO9V7vhul5ecMDbVvW8/qbWvxE5esAYwKy/1ihAvwpOqr2WGHO/o5YTvxyEqj46j2a/o5V0P4RXQT1AcSK+uKhzv9gikT8X5T0/KFEaP0dTT79Lu4s/6IinPp82szycKhg/EESNvl147r7x1Gq+ozKyv0ENrz9YOFU/phnzPvqnGD+J9II+Iq89P9YoQL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABY+7K1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF52KPQAAAAB4wOC/AAAAAECflLsAAAAApjUAQAAAAADPWKO7AAAAAAty4D8AAAAAd+CLvAAAAABxG/a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADt0YtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFj7lT0AAAAAPWPbvwAAAACcuVS9AAAAAN726j8AAAAAolToPAAAAAAZdf0/AAAAAH5Skr0AAAAAWPfkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHa867QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICcKV48AAAAAPrr4L8AAAAArPQrvAAAAADrA90/AAAAANVrdL0AAAAAqCz+PwAAAACqtoi9AAAAAA8g6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9jts1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlNjhvQAAAAAdMuG/AAAAAJUCLb0AAAAAsFXlPwAAAABZPHe9AAAAAIaA9z8AAAAAJ1F4vQAAAACKh/q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxEhp9JBgOMAWyUTegDjAF0lEdAqYpFDYywfXV9lChoBkdAm4epzPrv9mgHTegDaAhHQKmNY30f5k91fZQoaAZHQJzznmeUY9BoB03oA2gIR0CpkNbO/tY0dX2UKGgGR0CdWzJVbRnfaAdN6ANoCEdAqZG8DEFW4nV9lChoBkdAngEJuQ6p52gHTegDaAhHQKmYnqrR0EJ1fZQoaAZHQJtCQq4H5ahoB03oA2gIR0Cpm8NaQmu1dX2UKGgGR0CfqNRNyo4uaAdN6ANoCEdAqZ9ijcmBv3V9lChoBkdAmvDsDnvDxmgHTegDaAhHQKmgZSRbKRx1fZQoaAZHQJly3c1wYLtoB03oA2gIR0Cpp2hOpKjBdX2UKGgGR0CYndT3Zf2LaAdN6ANoCEdAqaqAFPi1iXV9lChoBkdAm0Bh33YcvWgHTegDaAhHQKmuFWJ79ht1fZQoaAZHQJykYyvcJt1oB03oA2gIR0CprxnskY4ydX2UKGgGR0CcTyiaiKziaAdN6ANoCEdAqbZ7KNhmXnV9lChoBkdAnStS9RJmNGgHTegDaAhHQKm5xOCXhOx1fZQoaAZHQJk4CFxn3+NoB03oA2gIR0CpvZLMs6JZdX2UKGgGR0CdHaH1e0HAaAdN6ANoCEdAqb6Qg1WKdnV9lChoBkdAm3WROP/7zmgHTegDaAhHQKnF06DGtIV1fZQoaAZHQJgdydYnv2JoB03oA2gIR0CpyPnR9gF5dX2UKGgGR0CdV9UPxx1gaAdN6ANoCEdAqcxFSwW30HV9lChoBkdAmiwzkp7TlWgHTegDaAhHQKnNN4KQaJh1fZQoaAZHQJbXjPqs2ehoB03oA2gIR0Cp1CS5iExqdX2UKGgGR0CYXRAIppevaAdN6ANoCEdAqddABxPweHV9lChoBkdAmrjFH8TBZmgHTegDaAhHQKnavb3XZoR1fZQoaAZHQJSRNV/+bVloB03oA2gIR0Cp27qhlDnedX2UKGgGR0CV2LvWYnfEaAdN6ANoCEdAqeKULlV94XV9lChoBkdAlnmiP6sQumgHTegDaAhHQKnlvFZxJd11fZQoaAZHQJckOAavRqpoB03oA2gIR0Cp6SRdhRZVdX2UKGgGR0CYu1k4WDYiaAdN6ANoCEdAqeoW8oQWe3V9lChoBkdAmDaZgssg+2gHTegDaAhHQKnwst16mfp1fZQoaAZHQJxxNBnjABVoB03oA2gIR0Cp85xqwhW6dX2UKGgGR0CbUuBwuM/AaAdN6ANoCEdAqfb09nscAHV9lChoBkdAnQUlotcv/WgHTegDaAhHQKn3+oR7JGR1fZQoaAZHQJmUn6VMVUNoB03oA2gIR0Cp/uGNR3vAdX2UKGgGR0CZAelWwNb1aAdN6ANoCEdAqgHpddE9dXV9lChoBkdAlqWHtF8XvmgHTegDaAhHQKoFPSYPXkJ1fZQoaAZHQJNBQnQY1pFoB03oA2gIR0CqBiUtAcDKdX2UKGgGR0CXJD508vEkaAdN6ANoCEdAqgzYuwosqnV9lChoBkdAlcDwPZqVQmgHTegDaAhHQKoP6cOskpt1fZQoaAZHQJsejhXKbKBoB03oA2gIR0CqE1Oy3Td+dX2UKGgGR0CZ3mlqJuVHaAdN6ANoCEdAqhRBciW3SnV9lChoBkdAk5for4Fia2gHTegDaAhHQKobDeRgZ0l1fZQoaAZHQJrrSkRBeHBoB03oA2gIR0CqHgvPLPlddX2UKGgGR0CYGUPtD2J0aAdN6ANoCEdAqiFYVj7Q9nV9lChoBkdAmDESv9tMwmgHTegDaAhHQKoiL9x6v7p1fZQoaAZHQJ73pVlwtJ5oB03oA2gIR0CqKQeglF+edX2UKGgGR0Ce7w87p3X7aAdN6ANoCEdAqiwpGSZBs3V9lChoBkdAnEMFxbSql2gHTegDaAhHQKovfAyEcsF1fZQoaAZHQJhzqM98qnZoB03oA2gIR0CqMHGTs6aLdX2UKGgGR0CcpTqHXVbzaAdN6ANoCEdAqjcVpEhJRXV9lChoBkdAmOvtFKCg9WgHTegDaAhHQKo5/VbRne11fZQoaAZHQJ2BS6vq1PZoB03oA2gIR0CqPTQfZElWdX2UKGgGR0CbQdjTrmheaAdN6ANoCEdAqj4SEcsDn3V9lChoBkdAmWweuieum2gHTegDaAhHQKpEloLXtjV1fZQoaAZHQJZrYupS75FoB03oA2gIR0CqR4qVpsXSdX2UKGgGR0CZI/RigCfZaAdN6ANoCEdAqksAs7MgU3V9lChoBkdAlrxCbhFVk2gHTegDaAhHQKpL35D7ZWd1fZQoaAZHQJTwT6be/HpoB03oA2gIR0CqUlzLOiWWdX2UKGgGR0CaohDdxhlUaAdN6ANoCEdAqlVwieNDMXV9lChoBkdAm5ZC4jKPn2gHTegDaAhHQKpYxOeJ53V1fZQoaAZHQJrSx71Iy0toB03oA2gIR0CqWavBSDRMdX2UKGgGR0CasDJpFkQPaAdN6ANoCEdAqmA5v5xionV9lChoBkdAnXydoi9qUWgHTegDaAhHQKpjO/mknCx1fZQoaAZHQJ1893s5XEJoB03oA2gIR0CqZoAB91EFdX2UKGgGR0CcD3rl/6O6aAdN6ANoCEdAqmdt94NZvHV9lChoBkdAmxcyf+S8rmgHTegDaAhHQKpuQZYxL011fZQoaAZHQJ5+Ahib2DhoB03oA2gIR0CqcSsm4RVZdX2UKGgGR0CeroEjxCpnaAdN6ANoCEdAqnRtLi++NHV9lChoBkdAnSiBvR7Z4GgHTegDaAhHQKp1Spkwvg51fZQoaAZHQJxcR5WzWwxoB03oA2gIR0Cqe+KY7aIvdX2UKGgGR0CbmTmALApKaAdN6ANoCEdAqn8ZufmLcnV9lChoBkdAnPc6BNEgGWgHTegDaAhHQKqCZ84xUNt1fZQoaAZHQJf19gqmTDBoB03oA2gIR0Cqg1GALApKdX2UKGgGR0CgOK4nfEXMaAdN6ANoCEdAqooejmCAc3V9lChoBkdAoBax24d6s2gHTegDaAhHQKqNS6ClJpZ1fZQoaAZHQKABCEEC/49oB03oA2gIR0CqkK9NWU8ndX2UKGgGR0CgzO4+jdpJaAdN6ANoCEdAqpGpKlHjInV9lChoBkdAoInpLoOhCmgHTegDaAhHQKqYEbqhUR51fZQoaAZHQKE1+Nc4YJpoB03oA2gIR0CqmxsqBmPHdX2UKGgGR0ChvExPXTVlaAdN6ANoCEdAqp6GOwPiDXV9lChoBkdAoXMK/0ulGmgHTegDaAhHQKqfZhVENON1fZQoaAZHQKHVHoV2zOZoB03oA2gIR0CqpiUCaJAMdX2UKGgGR0CiC87eEZivaAdN6ANoCEdAqqkpkd3jdnV9lChoBkdAnUDxPCVKPGgHTegDaAhHQKqsrC+lCTl1fZQoaAZHQKFE45FPSD1oB03oA2gIR0CqrZTPrv9cdX2UKGgGR0CgsZG2LHdXaAdN6ANoCEdAqrO5JI1+AnV9lChoBkdAn60NRR/EwWgHTegDaAhHQKq23ocrAgx1fZQoaAZHQKEWScuJ1q5oB03oA2gIR0Cquj4+8oQWdX2UKGgGR0CgZKlYMfA9aAdN6ANoCEdAqrs2YMOPNnV9lChoBkdAm6AqaoddV2gHTegDaAhHQKrCPnEETxp1fZQoaAZHQKBU6FCb+cZoB03oA2gIR0CqxXH/cWTHdX2UKGgGR0Ca9fZk078vaAdN6ANoCEdAqskttj0+T3V9lChoBkdAoDDjAN5MUWgHTegDaAhHQKrKSoXKr7x1fZQoaAZHQJo/1QbdadNoB03oA2gIR0Cq0Np2U0N0dX2UKGgGR0CWDOo86mwaaAdN6ANoCEdAqtP2sxO+I3V9lChoBkdAmZ/7876pHmgHTegDaAhHQKrXSibDuSh1fZQoaAZHQJWUFqCYkVxoB03oA2gIR0Cq2C+CbtqpdX2UKGgGR0CdgmW4EwFlaAdN6ANoCEdAqt8yCFsYVXV9lChoBkdAmP5vhAGB4GgHTegDaAhHQKriHQrMC911fZQoaAZHQJzyHG3nZChoB03oA2gIR0Cq5YTj/+85dX2UKGgGR0CcRXBppN9IaAdN6ANoCEdAquZ0KG+K0nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.27 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}