aaronrmm's picture
initial commit
5bb1348
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f66294b2790>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66294b2820>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66294b28b0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66294b2940>",
"_build": "<function ActorCriticPolicy._build at 0x7f66294b29d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f66294b2a60>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f66294b2af0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66294b2b80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f66294b2c10>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66294b2ca0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66294b2d30>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66294b2dc0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f66294d02c0>"
},
"verbose": 0,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1678654759813949715,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKb+yj3TlS8/KICEO7PWsL7ab7c8HpOEPAAAAAAAAAAAbWoTvjSD7D3wnXU+bpRUvrfyxz0Orio9AAAAAAAAAAAze6O9SfuJPtFrPj4L0W2+ybSUPHtNUT0AAAAAAAAAAM1GMT6IVJW8HaD+OsmKjLm1Jge+aEpZugAAgD8AAIA/5kA8PZbW9j7Ubqu9fw2hvkMKiTv9s2O9AAAAAAAAAABNPlw9jjGcPx4KoD7VARW/89uePWIu/T0AAAAAAAAAAE0N3L1jg0c9tpM4PhWiHL7c9zs98ewFOwAAAAAAAAAAhrdFvsP+gz/VJOa+hwfHvrEim74oo5y+AAAAAAAAAACa/Sk+JGODP4bi2j5qiPy+PPd5PlUuWD4AAAAAAAAAAPNL3j3XQ3q5ZeRJM/GyAbAZKes77mLNswAAAAAAAIA/pnn1PWXNDz/Upay9aprjvhyJKT1CpH+9AAAAAAAAAABN1Hu9hTOcudGTMD2OqCWzziPdu84zZbMAAIA/AACAPxpWzb2PTgG6SvFHtUyNhLAg4pS6cqdKNAAAgD8AAIA/swQjPleIaTyJDYe+R2cbvlagV73jOqa9AAAAAAAAAADAA9O92n+7P3OTGL9fo0m9sVm8vX3bkL4AAAAAAAAAADMX7b0o65w/FlrPvtff8b6ptRe+QD5zvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFeKReDk2ckCUhpRSlIwBbJRNEQGMAXSUR0Cj+K7gbZOBdX2UKGgGaAloD0MIJoqQup36cECUhpRSlGgVTZQBaBZHQKP5Bsv7FbV1fZQoaAZoCWgPQwi5Us+CUK1sQJSGlFKUaBVNAgFoFkdAo/kOafBeonV9lChoBmgJaA9DCG8PQkB+THBAlIaUUpRoFUvwaBZHQKP5ajUNKAd1fZQoaAZoCWgPQwgO3IE65WhwQJSGlFKUaBVL4mgWR0Cj+gzeXRgJdX2UKGgGaAloD0MI2EY82U1RZUCUhpRSlGgVTegDaBZHQKP6f0/W1+l1fZQoaAZoCWgPQwielh+4ipNxQJSGlFKUaBVL02gWR0Cj+9c9nscAdX2UKGgGaAloD0MIrW2Kx8UAYkCUhpRSlGgVTegDaBZHQKP8QqJ/G2l1fZQoaAZoCWgPQwhFEr2MYmZxQJSGlFKUaBVNCwFoFkdAo/yiwUxmCnV9lChoBmgJaA9DCDFBDd/CT3BAlIaUUpRoFUvgaBZHQKP9WqEvkBF1fZQoaAZoCWgPQwjOjH40XIVyQJSGlFKUaBVNEwFoFkdAo/3TYf4h2XV9lChoBmgJaA9DCAnFVtA04G1AlIaUUpRoFUvQaBZHQKP9+ewLVnV1fZQoaAZoCWgPQwgV4/xNKPxtQJSGlFKUaBVL1mgWR0Cj/kfdZaFFdX2UKGgGaAloD0MIrcCQ1a0+bkCUhpRSlGgVS+9oFkdAo/6Intv4unV9lChoBmgJaA9DCPj8MEK49nJAlIaUUpRoFUvlaBZHQKP+8iiZfD11fZQoaAZoCWgPQwhG0m70seNxQJSGlFKUaBVL82gWR0Cj/0VxsEaEdX2UKGgGaAloD0MIKQZINIFhbkCUhpRSlGgVS+poFkdAo/9pdUsFuHV9lChoBmgJaA9DCN8xPPYzGXJAlIaUUpRoFU0IAWgWR0CkANdc0LtvdX2UKGgGaAloD0MIHGFREScLckCUhpRSlGgVTRsBaBZHQKQBy9B8hLZ1fZQoaAZoCWgPQwjZQSWuYxNzQJSGlFKUaBVL+2gWR0CkAis4cWCVdX2UKGgGaAloD0MIMgOV8e/9cUCUhpRSlGgVS/1oFkdApAJu89Oh03V9lChoBmgJaA9DCN82UyGeh25AlIaUUpRoFU0fAmgWR0CkAn4PXkHVdX2UKGgGaAloD0MIDVUxlf7xcUCUhpRSlGgVTQcBaBZHQKQCzzbvgFZ1fZQoaAZoCWgPQwi9APvoFLZwQJSGlFKUaBVL9mgWR0CkA1GSyMUAdX2UKGgGaAloD0MIbRtGQXC4cECUhpRSlGgVS/VoFkdApANjnied1HV9lChoBmgJaA9DCN3rpL5sr3BAlIaUUpRoFU0OAWgWR0CkA2dvCMxXdX2UKGgGaAloD0MIoUrNHujRcUCUhpRSlGgVS+FoFkdApANu/gzguXV9lChoBmgJaA9DCCRh304iBXBAlIaUUpRoFUvdaBZHQKQDzPxhDw91fZQoaAZoCWgPQwgBTYQNz8NwQJSGlFKUaBVL3mgWR0CkA+Xm/336dX2UKGgGaAloD0MIUTBjClY3ckCUhpRSlGgVS/5oFkdApAQSya/h2nV9lChoBmgJaA9DCLa+SGiLnnFAlIaUUpRoFUv/aBZHQKQFL33YcvN1fZQoaAZoCWgPQwhKe4MvDKtwQJSGlFKUaBVL5mgWR0CkBhTc6/7BdX2UKGgGaAloD0MIDhKifMEgcECUhpRSlGgVS/toFkdApAYfuLJjlXV9lChoBmgJaA9DCPinVIkyxGxAlIaUUpRoFUvdaBZHQKQGUFX7tRh1fZQoaAZoCWgPQwh4mPbNfdxsQJSGlFKUaBVL9mgWR0CkBlGb9ZRsdX2UKGgGaAloD0MI5SX/k3/6cECUhpRSlGgVS+poFkdApAccL4N7SnV9lChoBmgJaA9DCGrZWl/kpHJAlIaUUpRoFUvxaBZHQKQHIgi/wiJ1fZQoaAZoCWgPQwjNVl7yP1twQJSGlFKUaBVL72gWR0CkByy0KJEZdX2UKGgGaAloD0MIpg9dUJ9TcECUhpRSlGgVS+xoFkdApAcsPczqKXV9lChoBmgJaA9DCOhLb39uoHFAlIaUUpRoFUv6aBZHQKQH86nzg/F1fZQoaAZoCWgPQwghj+BGCphxQJSGlFKUaBVNDwFoFkdApAgsMd92HXV9lChoBmgJaA9DCPtZLEVyLXFAlIaUUpRoFUvjaBZHQKQI/HKfWc11fZQoaAZoCWgPQwiUhETaRjBgQJSGlFKUaBVN6ANoFkdApAlxcmjTKHV9lChoBmgJaA9DCO4KfbCMrHFAlIaUUpRoFUvXaBZHQKQJruhK15V1fZQoaAZoCWgPQwh47dKGQ2FuQJSGlFKUaBVL2mgWR0CkCbLZi/fwdX2UKGgGaAloD0MINCxGXatgcUCUhpRSlGgVTQMBaBZHQKQKktoSL611fZQoaAZoCWgPQwjSqSufpVVwQJSGlFKUaBVNBgFoFkdApAql8Z1mrnV9lChoBmgJaA9DCBU8hVzpJHBAlIaUUpRoFUvbaBZHQKQKt8ohIOJ1fZQoaAZoCWgPQwhbC7PQzqpkQJSGlFKUaBVN6ANoFkdApArMbiqABnV9lChoBmgJaA9DCDfCoiJOfHBAlIaUUpRoFUviaBZHQKQK2QQtjCp1fZQoaAZoCWgPQwhMGM3K9lhxQJSGlFKUaBVNAAFoFkdApAtR4QjD9HV9lChoBmgJaA9DCHwPlxx3qHBAlIaUUpRoFUv/aBZHQKQMERmseXB1fZQoaAZoCWgPQwi6awn5oFNwQJSGlFKUaBVL/mgWR0CkDEYfGMn7dX2UKGgGaAloD0MIFqOutfeObkCUhpRSlGgVS99oFkdApAyYVwgkknV9lChoBmgJaA9DCP2FHjF6YG5AlIaUUpRoFUvhaBZHQKQNV9cbBGh1fZQoaAZoCWgPQwgxe9l22s9vQJSGlFKUaBVL9mgWR0CkDXKhUR4AdX2UKGgGaAloD0MI+IxEaMQmcUCUhpRSlGgVTQUBaBZHQKQN+it7rs11fZQoaAZoCWgPQwjyJyobVsxwQJSGlFKUaBVL22gWR0CkDi7lzU7TdX2UKGgGaAloD0MIbk26LREhcUCUhpRSlGgVS9BoFkdApA5DcGkeqHV9lChoBmgJaA9DCNPAj2pYUXBAlIaUUpRoFUvgaBZHQKQOWrzXjEN1fZQoaAZoCWgPQwgVH5+QnadxQJSGlFKUaBVL0mgWR0CkDtyhSLqEdX2UKGgGaAloD0MIOEiI8oXdcUCUhpRSlGgVTQoBaBZHQKQPXWPtD2J1fZQoaAZoCWgPQwjGvmTjwXByQJSGlFKUaBVLz2gWR0CkD7cXWOIZdX2UKGgGaAloD0MIesiUD0HNXkCUhpRSlGgVTegDaBZHQKQQEKtxMnJ1fZQoaAZoCWgPQwhcyCO4kXNxQJSGlFKUaBVL6WgWR0CkEGOfukULdX2UKGgGaAloD0MIl1eut810bkCUhpRSlGgVS9toFkdApBF/7BO58XV9lChoBmgJaA9DCOULWkjAZW9AlIaUUpRoFU0UAWgWR0CkEbF6qsEJdX2UKGgGaAloD0MImbfqOpRscECUhpRSlGgVS/ZoFkdApBIbfixVyXV9lChoBmgJaA9DCGBzDp6JSG5AlIaUUpRoFUveaBZHQKQSzSVnmJZ1fZQoaAZoCWgPQwjSHFn55StyQJSGlFKUaBVL52gWR0CkEyRBu4wzdX2UKGgGaAloD0MI+OP2y6daZUCUhpRSlGgVTegDaBZHQKQTLH4Glhx1fZQoaAZoCWgPQwhTIR6Jly5xQJSGlFKUaBVNBAFoFkdApBNV43WFvnV9lChoBmgJaA9DCGNi83HtEW9AlIaUUpRoFUveaBZHQKQTn28qWkd1fZQoaAZoCWgPQwh6HXHIxh1yQJSGlFKUaBVNEAFoFkdApBPW5vtMPHV9lChoBmgJaA9DCAGIu3oVPW5AlIaUUpRoFUveaBZHQKQUJQ3xWkt1fZQoaAZoCWgPQwhrmnecIm5uQJSGlFKUaBVL3mgWR0CkFPSRB/qgdX2UKGgGaAloD0MIz77yIL11cUCUhpRSlGgVS/xoFkdApBVADoyKvXV9lChoBmgJaA9DCLRZ9bnaV3FAlIaUUpRoFUvfaBZHQKQVc+fRNRF1fZQoaAZoCWgPQwjJVwIpMeBiQJSGlFKUaBVN6ANoFkdApBZcGZ/kNnV9lChoBmgJaA9DCA+1bRhFOHFAlIaUUpRoFUvhaBZHQKQWy46Oo5x1fZQoaAZoCWgPQwiLjXkdcU9RQJSGlFKUaBVLrGgWR0CkF8+t8uzydX2UKGgGaAloD0MI3gIJil9icECUhpRSlGgVS9hoFkdApBgbVQQ+U3V9lChoBmgJaA9DCDSBIhaxrHFAlIaUUpRoFUvaaBZHQKQYLzp5eJJ1fZQoaAZoCWgPQwgDBkmf1h5xQJSGlFKUaBVL1mgWR0CkGEV/2Cd0dX2UKGgGaAloD0MIF9NM9/r2cECUhpRSlGgVS8toFkdApBhWP91loXV9lChoBmgJaA9DCA6+MJnqjHBAlIaUUpRoFU0mAWgWR0CkGJqRuCPIdX2UKGgGaAloD0MI0Xe3skRKcUCUhpRSlGgVTRgBaBZHQKQZQXsPatd1fZQoaAZoCWgPQwhPV3cstuttQJSGlFKUaBVL72gWR0CkGbx7AtWddX2UKGgGaAloD0MIhel7DcGecECUhpRSlGgVTc8DaBZHQKQaU0VrRBx1fZQoaAZoCWgPQwgTnWUWoThuQJSGlFKUaBVL3GgWR0CkGnItcv/SdX2UKGgGaAloD0MIQ6z+CMORckCUhpRSlGgVS+FoFkdApBrEgB91EHV9lChoBmgJaA9DCG3mkNQCS3BAlIaUUpRoFU0tA2gWR0CkG3gXVLBbdX2UKGgGaAloD0MIELIsmDjOckCUhpRSlGgVTS8BaBZHQKQcEYwZflZ1fZQoaAZoCWgPQwjFymjk86BxQJSGlFKUaBVNBwFoFkdApByJhScbznV9lChoBmgJaA9DCC1eLAwRxXBAlIaUUpRoFUv3aBZHQKQclOZb6gx1fZQoaAZoCWgPQwjwGYnQSGJwQJSGlFKUaBVL7mgWR0CkHXjr7fpEdX2UKGgGaAloD0MIOQ1Rhf+PcECUhpRSlGgVS/5oFkdApB1812q1gHV9lChoBmgJaA9DCDbJj/iVKXBAlIaUUpRoFUv4aBZHQKQdl1SOzY51fZQoaAZoCWgPQwjjb3uChANxQJSGlFKUaBVL/GgWR0CkHbo9cKPXdX2UKGgGaAloD0MIfLYODvazcECUhpRSlGgVS9BoFkdApB23r2QGOnVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 320,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}