|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math, copy, time |
|
from torch.autograd import Variable |
|
import matplotlib.pyplot as plt |
|
import seaborn |
|
seaborn.set_context(context="talk") |
|
|
|
|
|
class EncoderDecoder(nn.Module): |
|
""" |
|
A standard Encoder-Decoder architecture. Base for this and many |
|
other models. |
|
""" |
|
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator): |
|
super(EncoderDecoder, self).__init__() |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.src_embed = src_embed |
|
self.tgt_embed = tgt_embed |
|
self.generator = generator |
|
|
|
def forward(self, src, tgt, src_mask, tgt_mask): |
|
"Take in and process masked src and target sequences." |
|
return self.decode(self.encode(src, src_mask), src_mask, |
|
tgt, tgt_mask) |
|
|
|
def encode(self, src, src_mask): |
|
return self.encoder(self.src_embed(src), src_mask) |
|
|
|
def decode(self, memory, src_mask, tgt, tgt_mask): |
|
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask) |
|
|
|
class Generator(nn.Module): |
|
"Define standard linear + softmax generation step." |
|
def __init__(self, d_model, vocab): |
|
super(Generator, self).__init__() |
|
self.proj = nn.Linear(d_model, vocab) |
|
|
|
def forward(self, x): |
|
return F.log_softmax(self.proj(x), dim=-1) |
|
|
|
def clones(module, N): |
|
"Produce N identical layers." |
|
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) |
|
|
|
class Encoder(nn.Module): |
|
"Core encoder is a stack of N layers" |
|
def __init__(self, layer, N): |
|
super(Encoder, self).__init__() |
|
self.layers = clones(layer, N) |
|
self.norm = LayerNorm(layer.size) |
|
|
|
def forward(self, x, mask): |
|
"Pass the input (and mask) through each layer in turn." |
|
for layer in self.layers: |
|
x = layer(x, mask) |
|
return self.norm(x) |
|
|
|
class LayerNorm(nn.Module): |
|
"Construct a layernorm module (See citation for details)." |
|
def __init__(self, features, eps=1e-6): |
|
super(LayerNorm, self).__init__() |
|
self.a_2 = nn.Parameter(torch.ones(features)) |
|
self.b_2 = nn.Parameter(torch.zeros(features)) |
|
self.eps = eps |
|
|
|
def forward(self, x): |
|
mean = x.mean(-1, keepdim=True) |
|
std = x.std(-1, keepdim=True) |
|
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 |
|
|
|
class SublayerConnection(nn.Module): |
|
""" |
|
A residual connection followed by a layer norm. |
|
Note for code simplicity the norm is first as opposed to last. |
|
""" |
|
def __init__(self, size, dropout): |
|
super(SublayerConnection, self).__init__() |
|
self.norm = LayerNorm(size) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x, sublayer): |
|
"Apply residual connection to any sublayer with the same size." |
|
return x + self.dropout(sublayer(self.norm(x))) |
|
|
|
class EncoderLayer(nn.Module): |
|
"Encoder is made up of self-attn and feed forward (defined below)" |
|
def __init__(self, size, self_attn, feed_forward, dropout): |
|
super(EncoderLayer, self).__init__() |
|
self.self_attn = self_attn |
|
self.feed_forward = feed_forward |
|
self.sublayer = clones(SublayerConnection(size, dropout), 2) |
|
self.size = size |
|
|
|
def forward(self, x, mask): |
|
"Follow Figure 1 (left) for connections." |
|
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) |
|
return self.sublayer[1](x, self.feed_forward) |
|
|
|
class Decoder(nn.Module): |
|
"Generic N layer decoder with masking." |
|
def __init__(self, layer, N): |
|
super(Decoder, self).__init__() |
|
self.layers = clones(layer, N) |
|
self.norm = LayerNorm(layer.size) |
|
|
|
def forward(self, x, memory, src_mask, tgt_mask): |
|
for layer in self.layers: |
|
x = layer(x, memory, src_mask, tgt_mask) |
|
return self.norm(x) |
|
|
|
class DecoderLayer(nn.Module): |
|
"Decoder is made of self-attn, src-attn, and feed forward (defined below)" |
|
def __init__(self, size, self_attn, src_attn, feed_forward, dropout): |
|
super(DecoderLayer, self).__init__() |
|
self.size = size |
|
self.self_attn = self_attn |
|
self.src_attn = src_attn |
|
self.feed_forward = feed_forward |
|
self.sublayer = clones(SublayerConnection(size, dropout), 3) |
|
|
|
def forward(self, x, memory, src_mask, tgt_mask): |
|
"Follow Figure 1 (right) for connections." |
|
m = memory |
|
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) |
|
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask)) |
|
return self.sublayer[2](x, self.feed_forward) |
|
|
|
def subsequent_mask(size): |
|
"Mask out subsequent positions." |
|
attn_shape = (1, size, size) |
|
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') |
|
return torch.from_numpy(subsequent_mask) == 0 |
|
|
|
def attention(query, key, value, mask=None, dropout=None): |
|
"Compute 'Scaled Dot Product Attention'" |
|
d_k = query.size(-1) |
|
scores = torch.matmul(query, key.transpose(-2, -1)) \ |
|
/ math.sqrt(d_k) |
|
if mask is not None: |
|
scores = scores.masked_fill(mask == 0, -1e9) |
|
p_attn = F.softmax(scores, dim = -1) |
|
if dropout is not None: |
|
p_attn = dropout(p_attn) |
|
return torch.matmul(p_attn, value), p_attn |
|
|
|
class MultiHeadedAttention(nn.Module): |
|
def __init__(self, h, d_model, dropout=0.1): |
|
"Take in model size and number of heads." |
|
super(MultiHeadedAttention, self).__init__() |
|
assert d_model % h == 0 |
|
|
|
self.d_k = d_model // h |
|
self.h = h |
|
self.linears = clones(nn.Linear(d_model, d_model), 4) |
|
self.attn = None |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
def forward(self, query, key, value, mask=None): |
|
"Implements Figure 2" |
|
if mask is not None: |
|
|
|
mask = mask.unsqueeze(1) |
|
nbatches = query.size(0) |
|
|
|
|
|
query, key, value = \ |
|
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) |
|
for l, x in zip(self.linears, (query, key, value))] |
|
|
|
|
|
x, self.attn = attention(query, key, value, mask=mask, |
|
dropout=self.dropout) |
|
|
|
|
|
x = x.transpose(1, 2).contiguous() \ |
|
.view(nbatches, -1, self.h * self.d_k) |
|
return self.linears[-1](x) |
|
|
|
class PositionwiseFeedForward(nn.Module): |
|
"Implements FFN equation." |
|
def __init__(self, d_model, d_ff, dropout=0.1): |
|
super(PositionwiseFeedForward, self).__init__() |
|
self.w_1 = nn.Linear(d_model, d_ff) |
|
self.w_2 = nn.Linear(d_ff, d_model) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
return self.w_2(self.dropout(F.relu(self.w_1(x)))) |
|
|
|
class Embeddings(nn.Module): |
|
def __init__(self, d_model, vocab): |
|
super(Embeddings, self).__init__() |
|
self.lut = nn.Embedding(vocab, d_model) |
|
self.d_model = d_model |
|
|
|
def forward(self, x): |
|
return self.lut(x) * math.sqrt(self.d_model) |
|
|
|
class PositionalEncoding(nn.Module): |
|
"Implement the PE function." |
|
def __init__(self, d_model, dropout, max_len=5000): |
|
super(PositionalEncoding, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * |
|
-(math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + Variable(self.pe[:, :x.size(1)], |
|
requires_grad=False) |
|
return self.dropout(x) |
|
|
|
def make_model(src_vocab, tgt_vocab, N=6, |
|
d_model=512, d_ff=2048, h=8, dropout=0.1): |
|
"Helper: Construct a model from hyperparameters." |
|
c = copy.deepcopy |
|
attn = MultiHeadedAttention(h, d_model) |
|
ff = PositionwiseFeedForward(d_model, d_ff, dropout) |
|
position = PositionalEncoding(d_model, dropout) |
|
model = EncoderDecoder( |
|
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), |
|
Decoder(DecoderLayer(d_model, c(attn), c(attn), |
|
c(ff), dropout), N), |
|
nn.Sequential(Embeddings(d_model, src_vocab), c(position)), |
|
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)), |
|
Generator(d_model, tgt_vocab)) |
|
|
|
|
|
|
|
for p in model.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform(p) |
|
return model |
|
|
|
class Batch: |
|
"Object for holding a batch of data with mask during training." |
|
def __init__(self, src, trg=None, pad=0): |
|
self.src = src |
|
self.src_mask = (src != pad).unsqueeze(-2) |
|
if trg is not None: |
|
self.trg = trg[:, :-1] |
|
self.trg_y = trg[:, 1:] |
|
self.trg_mask = \ |
|
self.make_std_mask(self.trg, pad) |
|
self.ntokens = (self.trg_y != pad).data.sum() |
|
|
|
@staticmethod |
|
def make_std_mask(tgt, pad): |
|
"Create a mask to hide padding and future words." |
|
tgt_mask = (tgt != pad).unsqueeze(-2) |
|
tgt_mask = tgt_mask & Variable( |
|
subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) |
|
return tgt_mask |
|
|
|
def run_epoch(data_iter, model, loss_compute): |
|
"Standard Training and Logging Function" |
|
start = time.time() |
|
total_tokens = 0 |
|
total_loss = 0 |
|
tokens = 0 |
|
for i, batch in enumerate(data_iter): |
|
out = model.forward(batch.src, batch.trg, |
|
batch.src_mask, batch.trg_mask) |
|
loss = loss_compute(out, batch.trg_y, batch.ntokens) |
|
total_loss += loss |
|
total_tokens += batch.ntokens |
|
tokens += batch.ntokens |
|
if i % 50 == 1: |
|
elapsed = time.time() - start |
|
print("Epoch Step: %d Loss: %f Tokens per Sec: %f" % |
|
(i, loss / batch.ntokens, tokens / elapsed)) |
|
start = time.time() |
|
tokens = 0 |
|
return total_loss / total_tokens |
|
|
|
global max_src_in_batch, max_tgt_in_batch |
|
def batch_size_fn(new, count, sofar): |
|
"Keep augmenting batch and calculate total number of tokens + padding." |
|
global max_src_in_batch, max_tgt_in_batch |
|
if count == 1: |
|
max_src_in_batch = 0 |
|
max_tgt_in_batch = 0 |
|
max_src_in_batch = max(max_src_in_batch, len(new.src)) |
|
max_tgt_in_batch = max(max_tgt_in_batch, len(new.trg) + 2) |
|
src_elements = count * max_src_in_batch |
|
tgt_elements = count * max_tgt_in_batch |
|
return max(src_elements, tgt_elements) |
|
|
|
class NoamOpt: |
|
"Optim wrapper that implements rate." |
|
def __init__(self, model_size, factor, warmup, optimizer): |
|
self.optimizer = optimizer |
|
self._step = 0 |
|
self.warmup = warmup |
|
self.factor = factor |
|
self.model_size = model_size |
|
self._rate = 0 |
|
|
|
def step(self): |
|
"Update parameters and rate" |
|
self._step += 1 |
|
rate = self.rate() |
|
for p in self.optimizer.param_groups: |
|
p['lr'] = rate |
|
self._rate = rate |
|
self.optimizer.step() |
|
|
|
def rate(self, step = None): |
|
"Implement `lrate` above" |
|
if step is None: |
|
step = self._step |
|
return self.factor * \ |
|
(self.model_size ** (-0.5) * |
|
min(step ** (-0.5), step * self.warmup ** (-1.5))) |
|
|
|
def get_std_opt(model): |
|
return NoamOpt(model.src_embed[0].d_model, 2, 4000, |
|
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) |
|
|
|
class LabelSmoothing(nn.Module): |
|
"Implement label smoothing." |
|
def __init__(self, size, padding_idx, smoothing=0.0): |
|
super(LabelSmoothing, self).__init__() |
|
self.criterion = nn.KLDivLoss(size_average=False) |
|
self.padding_idx = padding_idx |
|
self.confidence = 1.0 - smoothing |
|
self.smoothing = smoothing |
|
self.size = size |
|
self.true_dist = None |
|
|
|
def forward(self, x, target): |
|
assert x.size(1) == self.size |
|
true_dist = x.data.clone() |
|
true_dist.fill_(self.smoothing / (self.size - 2)) |
|
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) |
|
true_dist[:, self.padding_idx] = 0 |
|
mask = torch.nonzero(target.data == self.padding_idx) |
|
if mask.dim() > 0: |
|
true_dist.index_fill_(0, mask.squeeze(), 0.0) |
|
self.true_dist = true_dist |
|
return self.criterion(x, Variable(true_dist, requires_grad=False)) |
|
|
|
def data_gen(V, batch, nbatches): |
|
"Generate random data for a src-tgt copy task." |
|
for i in range(nbatches): |
|
data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10))) |
|
data[:, 0] = 1 |
|
src = Variable(data, requires_grad=False) |
|
tgt = Variable(data, requires_grad=False) |
|
yield Batch(src, tgt, 0) |
|
|
|
class SimpleLossCompute: |
|
"A simple loss compute and train function." |
|
def __init__(self, generator, criterion, opt=None): |
|
self.generator = generator |
|
self.criterion = criterion |
|
self.opt = opt |
|
|
|
def __call__(self, x, y, norm): |
|
x = self.generator(x) |
|
loss = self.criterion(x.contiguous().view(-1, x.size(-1)), |
|
y.contiguous().view(-1)) / norm |
|
loss.backward() |
|
if self.opt is not None: |
|
self.opt.step() |
|
self.opt.optimizer.zero_grad() |
|
return loss.data[0] * norm |
|
|
|
V = 11 |
|
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0) |
|
model = make_model(V, V, N=2) |
|
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400, |
|
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) |
|
|
|
for epoch in range(10): |
|
model.train() |
|
run_epoch(data_gen(V, 30, 20), model, |
|
SimpleLossCompute(model.generator, criterion, model_opt)) |
|
model.eval() |
|
print(run_epoch(data_gen(V, 30, 5), model, |
|
SimpleLossCompute(model.generator, criterion, None))) |
|
|
|
def greedy_decode(model, src, src_mask, max_len, start_symbol): |
|
memory = model.encode(src, src_mask) |
|
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data) |
|
for i in range(max_len-1): |
|
out = model.decode(memory, src_mask, |
|
Variable(ys), |
|
Variable(subsequent_mask(ys.size(1)) |
|
.type_as(src.data))) |
|
prob = model.generator(out[:, -1]) |
|
_, next_word = torch.max(prob, dim = 1) |
|
next_word = next_word.data[0] |
|
ys = torch.cat([ys, |
|
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1) |
|
return ys |
|
|
|
model.eval() |
|
src = Variable(torch.LongTensor([[1,2,3,4,5,6,7,8,9,10]]) ) |
|
src_mask = Variable(torch.ones(1, 1, 10) ) |
|
print(greedy_decode(model, src, src_mask, max_len=10, start_symbol=1)) |
|
|
|
from torchtext import data, datasets |
|
|
|
if True: |
|
import spacy |
|
spacy_de = spacy.load('de') |
|
spacy_en = spacy.load('en') |
|
|
|
def tokenize_de(text): |
|
return [tok.text for tok in spacy_de.tokenizer(text)] |
|
|
|
def tokenize_en(text): |
|
return [tok.text for tok in spacy_en.tokenizer(text)] |
|
|
|
BOS_WORD = '<s>' |
|
EOS_WORD = '</s>' |
|
BLANK_WORD = "<blank>" |
|
SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD) |
|
TGT = data.Field(tokenize=tokenize_en, init_token = BOS_WORD, |
|
eos_token = EOS_WORD, pad_token=BLANK_WORD) |
|
|
|
MAX_LEN = 100 |
|
train, val, test = datasets.IWSLT.splits( |
|
exts=('.de', '.en'), fields=(SRC, TGT), |
|
filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and |
|
len(vars(x)['trg']) <= MAX_LEN) |
|
MIN_FREQ = 2 |
|
SRC.build_vocab(train.src, min_freq=MIN_FREQ) |
|
TGT.build_vocab(train.trg, min_freq=MIN_FREQ) |
|
|
|
class MyIterator(data.Iterator): |
|
def create_batches(self): |
|
if self.train: |
|
def pool(d, random_shuffler): |
|
for p in data.batch(d, self.batch_size * 100): |
|
p_batch = data.batch( |
|
sorted(p, key=self.sort_key), |
|
self.batch_size, self.batch_size_fn) |
|
for b in random_shuffler(list(p_batch)): |
|
yield b |
|
self.batches = pool(self.data(), self.random_shuffler) |
|
|
|
else: |
|
self.batches = [] |
|
for b in data.batch(self.data(), self.batch_size, |
|
self.batch_size_fn): |
|
self.batches.append(sorted(b, key=self.sort_key)) |
|
|
|
def rebatch(pad_idx, batch): |
|
"Fix order in torchtext to match ours" |
|
src, trg = batch.src.transpose(0, 1), batch.trg.transpose(0, 1) |
|
return Batch(src, trg, pad_idx) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
devices = [0, 1, 2, 3] |
|
if True: |
|
pad_idx = TGT.vocab.stoi["<blank>"] |
|
model = make_model(len(SRC.vocab), len(TGT.vocab), N=6) |
|
model.cuda() |
|
criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1) |
|
criterion.cuda() |
|
BATCH_SIZE = 12000 |
|
train_iter = MyIterator(train, batch_size=BATCH_SIZE, device=0, |
|
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)), |
|
batch_size_fn=batch_size_fn, train=True) |
|
valid_iter = MyIterator(val, batch_size=BATCH_SIZE, device=0, |
|
repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)), |
|
batch_size_fn=batch_size_fn, train=False) |
|
model_par = nn.DataParallel(model, device_ids=devices) |
|
None |
|
|
|
|
|
if False: |
|
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 2000, |
|
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) |
|
for epoch in range(10): |
|
model_par.train() |
|
run_epoch((rebatch(pad_idx, b) for b in train_iter), |
|
model_par, |
|
MultiGPULossCompute(model.generator, criterion, |
|
devices=devices, opt=model_opt)) |
|
model_par.eval() |
|
loss = run_epoch((rebatch(pad_idx, b) for b in valid_iter), |
|
model_par, |
|
MultiGPULossCompute(model.generator, criterion, |
|
devices=devices, opt=None)) |
|
print(loss) |
|
else: |
|
model = torch.load("iwslt.pt") |
|
|
|
for i, batch in enumerate(valid_iter): |
|
src = batch.src.transpose(0, 1)[:1] |
|
src_mask = (src != SRC.vocab.stoi["<blank>"]).unsqueeze(-2) |
|
out = greedy_decode(model, src, src_mask, |
|
max_len=60, start_symbol=TGT.vocab.stoi["<s>"]) |
|
print("Translation:", end="\t") |
|
for i in range(1, out.size(1)): |
|
sym = TGT.vocab.itos[out[0, i]] |
|
if sym == "</s>": break |
|
print(sym, end =" ") |
|
print() |
|
print("Target:", end="\t") |
|
for i in range(1, batch.trg.size(0)): |
|
sym = TGT.vocab.itos[batch.trg.data[i, 0]] |
|
if sym == "</s>": break |
|
print(sym, end =" ") |
|
print() |
|
break |
|
|
|
if False: |
|
model.src_embed[0].lut.weight = model.tgt_embeddings[0].lut.weight |
|
model.generator.lut.weight = model.tgt_embed[0].lut.weight |
|
|
|
|
|
|
|
|
|
|
|
|
|
model, SRC, TGT = torch.load("en-de-model.pt") |
|
model.eval() |
|
sent = "▁The ▁log ▁file ▁can ▁be ▁sent ▁secret ly ▁with ▁email ▁or ▁FTP ▁to ▁a ▁specified ▁receiver".split() |
|
src = torch.LongTensor([[SRC.stoi[w] for w in sent]]) |
|
src = Variable(src) |
|
src_mask = (src != SRC.stoi["<blank>"]).unsqueeze(-2) |
|
out = greedy_decode(model, src, src_mask, |
|
max_len=60, start_symbol=TGT.stoi["<s>"]) |
|
print("Translation:", end="\t") |
|
trans = "<s> " |
|
for i in range(1, out.size(1)): |
|
sym = TGT.itos[out[0, i]] |
|
if sym == "</s>": break |
|
trans += sym + " " |
|
print(trans) |
|
|
|
tgt_sent = trans.split() |
|
def draw(data, x, y, ax): |
|
seaborn.heatmap(data, |
|
xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, |
|
cbar=False, ax=ax) |
|
|
|
for layer in range(1, 6, 2): |
|
fig, axs = plt.subplots(1,4, figsize=(20, 10)) |
|
print("Encoder Layer", layer+1) |
|
for h in range(4): |
|
draw(model.encoder.layers[layer].self_attn.attn[0, h].data, |
|
sent, sent if h ==0 else [], ax=axs[h]) |
|
plt.show() |
|
|
|
for layer in range(1, 6, 2): |
|
fig, axs = plt.subplots(1,4, figsize=(20, 10)) |
|
print("Decoder Self Layer", layer+1) |
|
for h in range(4): |
|
draw(model.decoder.layers[layer].self_attn.attn[0, h].data[:len(tgt_sent), :len(tgt_sent)], |
|
tgt_sent, tgt_sent if h ==0 else [], ax=axs[h]) |
|
plt.show() |
|
print("Decoder Src Layer", layer+1) |
|
fig, axs = plt.subplots(1,4, figsize=(20, 10)) |
|
for h in range(4): |
|
draw(model.decoder.layers[layer].self_attn.attn[0, h].data[:len(tgt_sent), :len(sent)], |
|
sent, tgt_sent if h ==0 else [], ax=axs[h]) |
|
plt.show() |