aatherton2024 commited on
Commit
413f656
·
1 Parent(s): ebcf801

Training in progress epoch 0

Browse files
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  output/source.spm filter=lfs diff=lfs merge=lfs -text
37
  output/target.spm filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  output/source.spm filter=lfs diff=lfs merge=lfs -text
37
  output/target.spm filter=lfs diff=lfs merge=lfs -text
38
+ myoutput_1541.out filter=lfs diff=lfs merge=lfs -text
myerrors_1540.out ADDED
@@ -0,0 +1 @@
 
0
  0%| | 0/329 [00:00<?, ?it/s]
1
  1%| | 2/329 [00:01<04:21, 1.25it/s]
2
  1%| | 3/329 [00:03<06:34, 1.21s/it]
3
  1%| | 4/329 [00:05<08:35, 1.59s/it]
4
  2%|▏ | 5/329 [00:07<09:49, 1.82s/it]slurmstepd-dl: error: *** JOB 1540 ON dl CANCELLED AT 2023-09-17T15:41:03 ***
 
1
+
2
  0%| | 0/329 [00:00<?, ?it/s]
3
  1%| | 2/329 [00:01<04:21, 1.25it/s]
4
  1%| | 3/329 [00:03<06:34, 1.21s/it]
5
  1%| | 4/329 [00:05<08:35, 1.59s/it]
6
  2%|▏ | 5/329 [00:07<09:49, 1.82s/it]slurmstepd-dl: error: *** JOB 1540 ON dl CANCELLED AT 2023-09-17T15:41:03 ***
myerrors_1541.out ADDED
@@ -0,0 +1 @@
 
0
  0%| | 0/329 [00:00<?, ?it/s]
1
  1%| | 2/329 [00:01<04:21, 1.25it/s]
2
  1%| | 3/329 [00:03<07:00, 1.29s/it]
3
  1%| | 4/329 [00:05<08:53, 1.64s/it]
4
  2%|▏ | 5/329 [00:08<10:03, 1.86s/it]
5
  2%|▏ | 6/329 [00:10<10:50, 2.01s/it]
6
  2%|▏ | 7/329 [00:12<11:24, 2.12s/it]
7
  2%|▏ | 8/329 [00:14<10:09, 1.90s/it]
8
  3%|▎ | 9/329 [00:15<09:10, 1.72s/it]
9
  3%|▎ | 10/329 [00:17<10:08, 1.91s/it]slurmstepd-dl: error: *** JOB 1541 ON dl CANCELLED AT 2023-09-17T15:42:50 ***
 
1
+
2
  0%| | 0/329 [00:00<?, ?it/s]
3
  1%| | 2/329 [00:01<04:21, 1.25it/s]
4
  1%| | 3/329 [00:03<07:00, 1.29s/it]
5
  1%| | 4/329 [00:05<08:53, 1.64s/it]
6
  2%|▏ | 5/329 [00:08<10:03, 1.86s/it]
7
  2%|▏ | 6/329 [00:10<10:50, 2.01s/it]
8
  2%|▏ | 7/329 [00:12<11:24, 2.12s/it]
9
  2%|▏ | 8/329 [00:14<10:09, 1.90s/it]
10
  3%|▎ | 9/329 [00:15<09:10, 1.72s/it]
11
  3%|▎ | 10/329 [00:17<10:08, 1.91s/it]slurmstepd-dl: error: *** JOB 1541 ON dl CANCELLED AT 2023-09-17T15:42:50 ***
myerrors_1542.out ADDED
@@ -0,0 +1 @@
 
0
  0%| | 0/329 [00:00<?, ?it/s]
1
  1%| | 2/329 [00:01<04:19, 1.26it/s]
2
  1%| | 3/329 [00:03<06:32, 1.20s/it]
3
  1%| | 4/329 [00:05<08:33, 1.58s/it]
4
  2%|▏ | 5/329 [00:07<09:47, 1.81s/it]
5
  2%|▏ | 6/329 [00:10<10:36, 1.97s/it]
6
  2%|▏ | 7/329 [00:12<11:11, 2.09s/it]
7
  2%|▏ | 8/329 [00:13<09:59, 1.87s/it]
8
  3%|▎ | 9/329 [00:15<09:03, 1.70s/it]
9
  3%|▎ | 10/329 [00:17<10:02, 1.89s/it]
10
  3%|▎ | 11/329 [00:19<10:23, 1.96s/it]
11
  4%|▎ | 12/329 [00:21<11:01, 2.09s/it]
12
  4%|▍ | 13/329 [00:23<10:42, 2.03s/it]
13
  4%|▍ | 14/329 [00:26<10:53, 2.07s/it]
14
  5%|▍ | 15/329 [00:27<09:38, 1.84s/it]
15
  5%|▍ | 16/329 [00:28<08:35, 1.65s/it]
16
  5%|▌ | 17/329 [00:30<09:46, 1.88s/it]
17
  5%|▌ | 18/329 [00:33<10:21, 2.00s/it]
18
  6%|▌ | 19/329 [00:35<10:42, 2.07s/it]
19
  6%|▌ | 20/329 [00:37<10:59, 2.14s/it]
20
  6%|▋ | 21/329 [00:40<11:21, 2.21s/it]
21
  7%|▋ | 22/329 [00:42<10:52, 2.13s/it]
22
  7%|▋ | 23/329 [00:44<10:59, 2.16s/it]
23
  7%|▋ | 24/329 [00:46<11:03, 2.17s/it]
24
  8%|▊ | 25/329 [00:48<10:41, 2.11s/it]
25
  8%|▊ | 26/329 [00:50<11:01, 2.18s/it]
26
  8%|▊ | 27/329 [00:53<11:05, 2.20s/it]
27
  9%|▊ | 28/329 [00:55<11:17, 2.25s/it]
28
  9%|▉ | 29/329 [00:57<11:22, 2.27s/it]
29
  9%|▉ | 30/329 [00:59<09:55, 1.99s/it]
30
  9%|▉ | 31/329 [01:00<09:18, 1.87s/it]
31
  10%|▉ | 32/329 [01:02<09:51, 1.99s/it]
32
  10%|█ | 33/329 [01:05<10:15, 2.08s/it]
33
  10%|█ | 34/329 [01:07<10:15, 2.09s/it]
34
  11%|█ | 35/329 [01:09<10:28, 2.14s/it]
35
  11%|█ | 36/329 [01:11<10:32, 2.16s/it]
36
  11%|█ | 37/329 [01:13<09:45, 2.00s/it]
37
  12%|█▏ | 38/329 [01:15<09:46, 2.02s/it]
38
  12%|█▏ | 39/329 [01:16<08:37, 1.78s/it]
39
  12%|█▏ | 40/329 [01:18<07:56, 1.65s/it]
40
  12%|█▏ | 41/329 [01:20<08:40, 1.81s/it]
41
  13%|█▎ | 42/329 [01:22<09:24, 1.97s/it]
42
  13%|█▎ | 43/329 [01:24<09:45, 2.05s/it]
43
  13%|█▎ | 44/329 [01:27<10:12, 2.15s/it]
44
  14%|█▎ | 45/329 [01:29<10:28, 2.21s/it]
45
  14%|█▍ | 46/329 [01:31<10:22, 2.20s/it]
46
  14%|█▍ | 47/329 [01:33<10:08, 2.16s/it]
47
  15%|█▍ | 48/329 [01:35<09:55, 2.12s/it]
48
  15%|█▍ | 49/329 [01:38<10:02, 2.15s/it]
49
  15%|█▌ | 50/329 [01:40<10:07, 2.18s/it]
50
  16%|█▌ | 51/329 [01:42<10:11, 2.20s/it]
51
  16%|█▌ | 52/329 [01:44<10:21, 2.25s/it]
52
  16%|█▌ | 53/329 [01:47<10:13, 2.22s/it]
53
  16%|█▋ | 54/329 [01:48<08:43, 1.90s/it]
54
  17%|█▋ | 55/329 [01:50<09:10, 2.01s/it]
55
  17%|█▋ | 56/329 [01:52<09:07, 2.00s/it]
56
  17%|█▋ | 57/329 [01:54<09:21, 2.06s/it]
57
  18%|█▊ | 58/329 [01:56<09:14, 2.05s/it]
58
  18%|█▊ | 59/329 [01:58<09:29, 2.11s/it]
59
  18%|█▊ | 60/329 [02:01<09:48, 2.19s/it]
60
  19%|█▊ | 61/329 [02:03<10:00, 2.24s/it]
61
  19%|█▉ | 62/329 [02:05<09:48, 2.20s/it]
62
  19%|█▉ | 63/329 [02:08<09:54, 2.24s/it]
63
  19%|█▉ | 64/329 [02:10<09:30, 2.15s/it]
64
  20%|█▉ | 65/329 [02:12<09:37, 2.19s/it]
65
  20%|██ | 66/329 [02:14<09:36, 2.19s/it]
66
  20%|██ | 67/329 [02:16<09:20, 2.14s/it]
67
  21%|██ | 68/329 [02:18<09:28, 2.18s/it]
68
  21%|██ | 69/329 [02:21<09:39, 2.23s/it]
69
  21%|██▏ | 70/329 [02:23<09:42, 2.25s/it]
70
  22%|██▏ | 71/329 [02:25<09:41, 2.25s/it]
71
  22%|██▏ | 72/329 [02:28<09:41, 2.26s/it]
72
  22%|██▏ | 73/329 [02:29<09:15, 2.17s/it]
73
  22%|██▏ | 74/329 [02:32<09:30, 2.24s/it]
74
  23%|██▎ | 75/329 [02:34<09:36, 2.27s/it]
75
  23%|██▎ | 76/329 [02:36<09:30, 2.26s/it]
76
  23%|██▎ | 77/329 [02:39<09:31, 2.27s/it]
77
  24%|██▎ | 78/329 [02:40<08:44, 2.09s/it]
78
  24%|██▍ | 79/329 [02:42<08:37, 2.07s/it]
79
  24%|██▍ | 80/329 [02:45<08:50, 2.13s/it]
80
  25%|██▍ | 81/329 [02:47<09:13, 2.23s/it]
81
  25%|██▍ | 82/329 [02:49<09:09, 2.23s/it]
82
  25%|██▌ | 83/329 [02:52<09:15, 2.26s/it]
83
  26%|██▌ | 84/329 [02:54<08:40, 2.12s/it]
84
  26%|██▌ | 85/329 [02:56<08:44, 2.15s/it]
85
  26%|██▌ | 86/329 [02:57<07:48, 1.93s/it]
86
  26%|██▋ | 87/329 [02:59<07:16, 1.81s/it]
87
  27%|██▋ | 88/329 [03:01<07:41, 1.92s/it]
88
  27%|██▋ | 89/329 [03:03<08:04, 2.02s/it]
89
  27%|██▋ | 90/329 [03:05<08:22, 2.10s/it]
90
  28%|██▊ | 91/329 [03:08<08:28, 2.14s/it]
91
  28%|██▊ | 92/329 [03:10<08:20, 2.11s/it]
92
  28%|██▊ | 93/329 [03:12<08:41, 2.21s/it]
93
  29%|██▊ | 94/329 [03:13<07:39, 1.96s/it]
94
  29%|██▉ | 95/329 [03:16<07:52, 2.02s/it]
95
  29%|██▉ | 96/329 [03:18<07:47, 2.01s/it]
96
  29%|██▉ | 97/329 [03:20<08:07, 2.10s/it]
97
  30%|���█▉ | 98/329 [03:22<08:13, 2.14s/it]
98
  30%|███ | 99/329 [03:24<08:22, 2.18s/it]
99
  30%|███ | 100/329 [03:27<08:29, 2.22s/it]
100
  31%|███ | 101/329 [03:28<07:34, 1.99s/it]
101
  31%|███ | 102/329 [03:30<06:44, 1.78s/it]
102
  31%|███▏ | 103/329 [03:32<07:09, 1.90s/it]
103
  32%|███▏ | 104/329 [03:34<07:39, 2.04s/it]
104
  32%|███▏ | 105/329 [03:36<07:00, 1.88s/it]
105
  32%|███▏ | 106/329 [03:38<07:17, 1.96s/it]
106
  33%|███▎ | 107/329 [03:40<07:35, 2.05s/it]
107
  33%|███▎ | 108/329 [03:42<07:03, 1.92s/it]
108
  33%|███▎ | 109/329 [03:44<07:14, 1.98s/it]
109
  33%|███▎ | 110/329 [03:45<06:54, 1.89s/it]
110
  34%|███▎ | 111/329 [03:47<06:02, 1.66s/it]
111
  34%|███▍ | 112/329 [03:49<06:36, 1.83s/it]
112
  34%|███▍ | 113/329 [03:51<06:47, 1.89s/it]
113
  35%|███▍ | 114/329 [03:52<06:13, 1.74s/it]
114
  35%|███▍ | 115/329 [03:54<06:42, 1.88s/it]
115
  35%|███▌ | 116/329 [03:57<07:06, 2.00s/it]
116
  36%|███▌ | 117/329 [03:59<07:06, 2.01s/it]
117
  36%|███▌ | 118/329 [04:00<06:31, 1.85s/it]
118
  36%|███▌ | 119/329 [04:02<06:19, 1.81s/it]
119
  36%|███▋ | 120/329 [04:04<06:46, 1.94s/it]
120
  37%|███▋ | 121/329 [04:06<06:28, 1.87s/it]
121
  37%|███▋ | 122/329 [04:08<06:38, 1.92s/it]
122
  37%|███▋ | 123/329 [04:10<06:53, 2.01s/it]
123
  38%|███▊ | 124/329 [04:12<07:01, 2.06s/it]
124
  38%|███▊ | 125/329 [04:15<07:12, 2.12s/it]
125
  38%|███▊ | 126/329 [04:17<07:15, 2.14s/it]
126
  39%|███▊ | 127/329 [04:19<07:26, 2.21s/it]
127
  39%|███▉ | 128/329 [04:21<07:04, 2.11s/it]
128
  39%|███▉ | 129/329 [04:23<07:03, 2.12s/it]slurmstepd-dl: error: *** JOB 1542 ON dl CANCELLED AT 2023-09-17T15:47:56 ***
 
1
+
2
  0%| | 0/329 [00:00<?, ?it/s]
3
  1%| | 2/329 [00:01<04:19, 1.26it/s]
4
  1%| | 3/329 [00:03<06:32, 1.20s/it]
5
  1%| | 4/329 [00:05<08:33, 1.58s/it]
6
  2%|▏ | 5/329 [00:07<09:47, 1.81s/it]
7
  2%|▏ | 6/329 [00:10<10:36, 1.97s/it]
8
  2%|▏ | 7/329 [00:12<11:11, 2.09s/it]
9
  2%|▏ | 8/329 [00:13<09:59, 1.87s/it]
10
  3%|▎ | 9/329 [00:15<09:03, 1.70s/it]
11
  3%|▎ | 10/329 [00:17<10:02, 1.89s/it]
12
  3%|▎ | 11/329 [00:19<10:23, 1.96s/it]
13
  4%|▎ | 12/329 [00:21<11:01, 2.09s/it]
14
  4%|▍ | 13/329 [00:23<10:42, 2.03s/it]
15
  4%|▍ | 14/329 [00:26<10:53, 2.07s/it]
16
  5%|▍ | 15/329 [00:27<09:38, 1.84s/it]
17
  5%|▍ | 16/329 [00:28<08:35, 1.65s/it]
18
  5%|▌ | 17/329 [00:30<09:46, 1.88s/it]
19
  5%|▌ | 18/329 [00:33<10:21, 2.00s/it]
20
  6%|▌ | 19/329 [00:35<10:42, 2.07s/it]
21
  6%|▌ | 20/329 [00:37<10:59, 2.14s/it]
22
  6%|▋ | 21/329 [00:40<11:21, 2.21s/it]
23
  7%|▋ | 22/329 [00:42<10:52, 2.13s/it]
24
  7%|▋ | 23/329 [00:44<10:59, 2.16s/it]
25
  7%|▋ | 24/329 [00:46<11:03, 2.17s/it]
26
  8%|▊ | 25/329 [00:48<10:41, 2.11s/it]
27
  8%|▊ | 26/329 [00:50<11:01, 2.18s/it]
28
  8%|▊ | 27/329 [00:53<11:05, 2.20s/it]
29
  9%|▊ | 28/329 [00:55<11:17, 2.25s/it]
30
  9%|▉ | 29/329 [00:57<11:22, 2.27s/it]
31
  9%|▉ | 30/329 [00:59<09:55, 1.99s/it]
32
  9%|▉ | 31/329 [01:00<09:18, 1.87s/it]
33
  10%|▉ | 32/329 [01:02<09:51, 1.99s/it]
34
  10%|█ | 33/329 [01:05<10:15, 2.08s/it]
35
  10%|█ | 34/329 [01:07<10:15, 2.09s/it]
36
  11%|█ | 35/329 [01:09<10:28, 2.14s/it]
37
  11%|█ | 36/329 [01:11<10:32, 2.16s/it]
38
  11%|█ | 37/329 [01:13<09:45, 2.00s/it]
39
  12%|█▏ | 38/329 [01:15<09:46, 2.02s/it]
40
  12%|█▏ | 39/329 [01:16<08:37, 1.78s/it]
41
  12%|█▏ | 40/329 [01:18<07:56, 1.65s/it]
42
  12%|█▏ | 41/329 [01:20<08:40, 1.81s/it]
43
  13%|█▎ | 42/329 [01:22<09:24, 1.97s/it]
44
  13%|█▎ | 43/329 [01:24<09:45, 2.05s/it]
45
  13%|█▎ | 44/329 [01:27<10:12, 2.15s/it]
46
  14%|█▎ | 45/329 [01:29<10:28, 2.21s/it]
47
  14%|█▍ | 46/329 [01:31<10:22, 2.20s/it]
48
  14%|█▍ | 47/329 [01:33<10:08, 2.16s/it]
49
  15%|█▍ | 48/329 [01:35<09:55, 2.12s/it]
50
  15%|█▍ | 49/329 [01:38<10:02, 2.15s/it]
51
  15%|█▌ | 50/329 [01:40<10:07, 2.18s/it]
52
  16%|█▌ | 51/329 [01:42<10:11, 2.20s/it]
53
  16%|█▌ | 52/329 [01:44<10:21, 2.25s/it]
54
  16%|█▌ | 53/329 [01:47<10:13, 2.22s/it]
55
  16%|█▋ | 54/329 [01:48<08:43, 1.90s/it]
56
  17%|█▋ | 55/329 [01:50<09:10, 2.01s/it]
57
  17%|█▋ | 56/329 [01:52<09:07, 2.00s/it]
58
  17%|█▋ | 57/329 [01:54<09:21, 2.06s/it]
59
  18%|█▊ | 58/329 [01:56<09:14, 2.05s/it]
60
  18%|█▊ | 59/329 [01:58<09:29, 2.11s/it]
61
  18%|█▊ | 60/329 [02:01<09:48, 2.19s/it]
62
  19%|█▊ | 61/329 [02:03<10:00, 2.24s/it]
63
  19%|█▉ | 62/329 [02:05<09:48, 2.20s/it]
64
  19%|█▉ | 63/329 [02:08<09:54, 2.24s/it]
65
  19%|█▉ | 64/329 [02:10<09:30, 2.15s/it]
66
  20%|█▉ | 65/329 [02:12<09:37, 2.19s/it]
67
  20%|██ | 66/329 [02:14<09:36, 2.19s/it]
68
  20%|██ | 67/329 [02:16<09:20, 2.14s/it]
69
  21%|██ | 68/329 [02:18<09:28, 2.18s/it]
70
  21%|██ | 69/329 [02:21<09:39, 2.23s/it]
71
  21%|██▏ | 70/329 [02:23<09:42, 2.25s/it]
72
  22%|██▏ | 71/329 [02:25<09:41, 2.25s/it]
73
  22%|██▏ | 72/329 [02:28<09:41, 2.26s/it]
74
  22%|██▏ | 73/329 [02:29<09:15, 2.17s/it]
75
  22%|██▏ | 74/329 [02:32<09:30, 2.24s/it]
76
  23%|██▎ | 75/329 [02:34<09:36, 2.27s/it]
77
  23%|██▎ | 76/329 [02:36<09:30, 2.26s/it]
78
  23%|██▎ | 77/329 [02:39<09:31, 2.27s/it]
79
  24%|██▎ | 78/329 [02:40<08:44, 2.09s/it]
80
  24%|██▍ | 79/329 [02:42<08:37, 2.07s/it]
81
  24%|██▍ | 80/329 [02:45<08:50, 2.13s/it]
82
  25%|██▍ | 81/329 [02:47<09:13, 2.23s/it]
83
  25%|██▍ | 82/329 [02:49<09:09, 2.23s/it]
84
  25%|██▌ | 83/329 [02:52<09:15, 2.26s/it]
85
  26%|██▌ | 84/329 [02:54<08:40, 2.12s/it]
86
  26%|██▌ | 85/329 [02:56<08:44, 2.15s/it]
87
  26%|██▌ | 86/329 [02:57<07:48, 1.93s/it]
88
  26%|██▋ | 87/329 [02:59<07:16, 1.81s/it]
89
  27%|██▋ | 88/329 [03:01<07:41, 1.92s/it]
90
  27%|██▋ | 89/329 [03:03<08:04, 2.02s/it]
91
  27%|██▋ | 90/329 [03:05<08:22, 2.10s/it]
92
  28%|██▊ | 91/329 [03:08<08:28, 2.14s/it]
93
  28%|██▊ | 92/329 [03:10<08:20, 2.11s/it]
94
  28%|██▊ | 93/329 [03:12<08:41, 2.21s/it]
95
  29%|██▊ | 94/329 [03:13<07:39, 1.96s/it]
96
  29%|██▉ | 95/329 [03:16<07:52, 2.02s/it]
97
  29%|██▉ | 96/329 [03:18<07:47, 2.01s/it]
98
  29%|██▉ | 97/329 [03:20<08:07, 2.10s/it]
99
  30%|���█▉ | 98/329 [03:22<08:13, 2.14s/it]
100
  30%|███ | 99/329 [03:24<08:22, 2.18s/it]
101
  30%|███ | 100/329 [03:27<08:29, 2.22s/it]
102
  31%|███ | 101/329 [03:28<07:34, 1.99s/it]
103
  31%|███ | 102/329 [03:30<06:44, 1.78s/it]
104
  31%|███▏ | 103/329 [03:32<07:09, 1.90s/it]
105
  32%|███▏ | 104/329 [03:34<07:39, 2.04s/it]
106
  32%|███▏ | 105/329 [03:36<07:00, 1.88s/it]
107
  32%|███▏ | 106/329 [03:38<07:17, 1.96s/it]
108
  33%|███▎ | 107/329 [03:40<07:35, 2.05s/it]
109
  33%|███▎ | 108/329 [03:42<07:03, 1.92s/it]
110
  33%|███▎ | 109/329 [03:44<07:14, 1.98s/it]
111
  33%|███▎ | 110/329 [03:45<06:54, 1.89s/it]
112
  34%|███▎ | 111/329 [03:47<06:02, 1.66s/it]
113
  34%|███▍ | 112/329 [03:49<06:36, 1.83s/it]
114
  34%|███▍ | 113/329 [03:51<06:47, 1.89s/it]
115
  35%|███▍ | 114/329 [03:52<06:13, 1.74s/it]
116
  35%|███▍ | 115/329 [03:54<06:42, 1.88s/it]
117
  35%|███▌ | 116/329 [03:57<07:06, 2.00s/it]
118
  36%|███▌ | 117/329 [03:59<07:06, 2.01s/it]
119
  36%|███▌ | 118/329 [04:00<06:31, 1.85s/it]
120
  36%|███▌ | 119/329 [04:02<06:19, 1.81s/it]
121
  36%|███▋ | 120/329 [04:04<06:46, 1.94s/it]
122
  37%|███▋ | 121/329 [04:06<06:28, 1.87s/it]
123
  37%|███▋ | 122/329 [04:08<06:38, 1.92s/it]
124
  37%|███▋ | 123/329 [04:10<06:53, 2.01s/it]
125
  38%|███▊ | 124/329 [04:12<07:01, 2.06s/it]
126
  38%|███▊ | 125/329 [04:15<07:12, 2.12s/it]
127
  38%|███▊ | 126/329 [04:17<07:15, 2.14s/it]
128
  39%|███▊ | 127/329 [04:19<07:26, 2.21s/it]
129
  39%|███▉ | 128/329 [04:21<07:04, 2.11s/it]
130
  39%|███▉ | 129/329 [04:23<07:03, 2.12s/it]slurmstepd-dl: error: *** JOB 1542 ON dl CANCELLED AT 2023-09-17T15:47:56 ***
myoutput_1540.out ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DatasetDict({
2
+ train: Dataset({
3
+ features: ['id', 'translation'],
4
+ num_rows: 210173
5
+ })
6
+ })
7
+ DatasetDict({
8
+ train: Dataset({
9
+ features: ['id', 'translation'],
10
+ num_rows: 189155
11
+ })
12
+ test: Dataset({
13
+ features: ['id', 'translation'],
14
+ num_rows: 21018
15
+ })
16
+ })
17
+ DatasetDict({
18
+ train: Dataset({
19
+ features: ['id', 'translation'],
20
+ num_rows: 189155
21
+ })
22
+ validation: Dataset({
23
+ features: ['id', 'translation'],
24
+ num_rows: 21018
25
+ })
26
+ })
27
+ evaluate1
myoutput_1541.out ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3954e1269fd8ff6494d0f93177fa00f2346a9995299621d2cb927da763b95625
3
+ size 23953172
myoutput_1542.out ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [{'en': "Calibration is about to check the value range your device delivers. Please move axis %1 %2 on your device to the maximum position. Press any button on the device or click on the'Next 'button to continue with the next step.", 'fr': "Le calibrage va vérifier la plage de valeurs que votre matériel produit. Veuillez déplacer l'axe %1 %2 de votre périphérique à la position maximale. Appuyez sur n'importe quel bouton du périphérique ou sur le bouton « & #160; Suivant & #160; » pour la prochaine étape."}, {'en': 'Default to expanded threads', 'fr': 'Par défaut, développer les fils de discussion'}, {'en': '*. ui *. UI_BAR_User Interface Files', 'fr': '*. ui *. UI_BAR_Fichiers interface utilisateur'}, {'en': 'New Action', 'fr': 'Nouvelle action'}, {'en': 'Sentence, word and letter counts for this document', 'fr': 'Nombre de phrases, de mots et de lettres pour ce document'}, {'en': 'Reorder Thumbnails', 'fr': 'Réordonner les vignettes'}, {'en': "Anubis, or Inpu, was an Egyptian god of the afterlife. To get the treasure between Anubis' ears, dig out the two columns to the left of the mummy and stand on top of the mummy. Move left off the mummy while digging right. The mummy should fall into the hole in the right most column. Now dig out the left two columns until you connect to the ladder-eye. Move down from the right most ladder of the eye and you will fall to the pole below. To get the treasure inside the right ear, dig out the higher of the two-block columns, falling onto the right two-block column. Move to the left and dig the second two-block column. Now move to the right and dig out the one-block column, freeing the mummy. Move one more to the right and dig out three blocks so that you have a two block wide ledge to stand on. Move left and dig out the square to your right. Wait for the mummy to fall, get his treasure, and race up the ladder to confront five mummies blocking the exit.", 'fr': "Anubis, ou Inpou & #160; / Anepou, était un dieu égyptien de la vie de l'au-delà. Pour récupérer le trésor entre les oreilles d'Anubis, creusez les deux colonnes à la gauche de la momie et marchez sur le haut de la momie. Déplacez vous à gauche de la momie en creusant vers la droite. La momie devrait tomber dans le trou dans la colonne la plus à droite. Maintenant creusez les deux colonnes de gauche jusqu'à ce que vous vous connectez à l 'œ il-échelle. Descendez de l'échelle la plus à droite de l 'œ il et vous tomberez dans la fosse en dessous. Pour récupérer le trésor dans l'oreille de droite, creusez au plus haut des deux blocs de colonnes, en tombant sur la droite de celles -ci. Déplacez vous vers la gauche et creusez le deuxième deux-blocs de colonnes, libérant la momie. Déplacez vous une fois de plus vers la droite et creusez les trois blocs pour avoir un large rebord de deux blocs pour marcher. Déplacez vous vers la gauche et creusez la carré à votre droite. Attendez que la momie tombe, récupérez le trésor, et courrez sur l'échelle pour faire face au cinq momies bloquant la sortie."}, {'en': 'Quickly get the first two enemies into the double pit to the left of the gold. First get both of them into the little box, then release them left. Now fall onto them and collect the gold, then ride the third enemy down and use him to get across to the ladder.', 'fr': "Mettez rapidement les deux premiers ennemis dans la double fosse à gauche de l'or. Tout d'abord, mettez -les tous deux dans la sorte de petite boîte, puis relâchez -les à gauche. Maintenant, laissez -vous tomber sur eux et collectez l'or, puis faites tomber le troisième ennemi et utilisez -le pour parvenir à l'échelle."}, {'en': '+50', 'fr': '+50'}, {'en': 'YAML', 'fr': 'YAMLLanguage'}]
2
+ DatasetDict({
3
+ train: Dataset({
4
+ features: ['id', 'translation'],
5
+ num_rows: 189155
6
+ })
7
+ validation: Dataset({
8
+ features: ['id', 'translation'],
9
+ num_rows: 21018
10
+ })
11
+ })
12
+ evaluate1
translation.py CHANGED
@@ -22,9 +22,11 @@ from torch import Tensor
22
  model_checkpoint = "Helsinki-NLP/opus-mt-en-fr"
23
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt")
24
  raw_datasets = load_dataset("kde4", lang1="en", lang2="fr")
 
25
  split_datasets = raw_datasets["train"].train_test_split(train_size=0.9, seed=20)
 
26
  split_datasets["validation"] = split_datasets.pop("test")
27
-
28
  #contants
29
  max_length = 128
30
 
 
22
  model_checkpoint = "Helsinki-NLP/opus-mt-en-fr"
23
  tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt")
24
  raw_datasets = load_dataset("kde4", lang1="en", lang2="fr")
25
+
26
  split_datasets = raw_datasets["train"].train_test_split(train_size=0.9, seed=20)
27
+ print(split_datasets["train"]["translation"][0:10])
28
  split_datasets["validation"] = split_datasets.pop("test")
29
+ print(split_datasets)
30
  #contants
31
  max_length = 128
32