File size: 3,867 Bytes
0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 10cabc4 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 0205d01 116b3f6 3abcdfe 0f71788 3abcdfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language:
- en
license: other
tags:
- chat
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
---
# Dracarys-72B-Instruct
# Introduction
We introduce the latest in the Smaug series, the Dracarys family of finetunes targeting coding performance improvements
across a variety of base models.
This variant is a finetune of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct)
Compared to Qwen2-72B-Instruct, Dracarys has better LiveCodeBench scores (see evaluation results below).
### Model Description
- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
- **Finetuned from model:** [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
## How to use
The prompt format is unchanged from Qwen2-72B-Instruct (see evaluations for prompt details for LCB)
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "abacusai/Dracarys-72B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are data science coding assistant that generates Python code using Pandas and Numpy."},
{"role": "user", "content": "Write code to select rows from the dataframe `df` having the maximum `temp` for each `city`"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
# Evaluation Results
## LiveCodeBench
| Model | Code Generation | Code Execution |Test Output Prediction |
|---------------------------|-----------------|----------------|-----------------------|
| **Dracarys-72B-Instruct** | **33.57** | **62.96** | **58.93** |
| Qwen2-72B-Instruct | 32.92 | 58.95 | 55.88 |
## Breakdown of LiveCodeBench CodeGeneration
| Model | Easy | Medium | Hard |
|---------------------------|-----------------|----------------|-----------------------|
| **Dracarys-72B-Instruct** | 64.16 | **25.06** | **3.64** |
| Qwen2-72B-Instruct | 65.83 | 22.28 | 3.11 |
## Breakdown of LiveCodeBench TestOutputPrediction
| Model | Easy | Medium | Hard |
|---------------------------|-----------------|----------------|-----------------------|
| **Dracarys-72B-Instruct** | **65.37** | **58.74** | **46.38** |
| Qwen2-72B-Instruct | 63.19 | 54.08 | 46.52 |
## LiveBench (July update)
| Model | Global Average | Coding Average | Language Average | Mathematics Average | Data Analysis Average | Reasoning Average | IF Average |
|---------------------------|----------------|----------------|------------------|---------------------|-----------------------|------------------|-------------|
| **Dracarys-72B-Instruct** | **41.20** | **38.95** | **31.17** | 42.77 | 26.24 | 40 | 68.08 |
| Qwen2-72B-Instruct | 40.15 | 32.38 | 29.21 | 43.44 | 26.24 | 41.33 | 68.27 |
|