File size: 4,758 Bytes
58c54f7
 
 
 
 
b964621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58c54f7
 
2f83b45
 
98fdc83
2f83b45
98fdc83
 
 
 
 
 
 
 
 
 
 
2f83b45
 
 
 
 
b964621
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: apache-2.0
tags:
- mixtral
- finetune
model-index:
- name: Smaug-Mixtral-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 55.54
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Mixtral-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 31.92
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Mixtral-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Mixtral-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.82
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Mixtral-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.99
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Mixtral-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.13
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Mixtral-v0.1
      name: Open LLM Leaderboard
---

## Overview

This model is part of the Smaug series of finetuned models. This one based on https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

We use a new fine-tuning technique, DPO-Positive (DPOP), and new pairwise preference versions of ARC, HellaSwag, and MetaMath (as well as other existing datasets). 
We introduce the technique and the full training details in our new paper: https://arxiv.org/abs/2402.13228.

We show that on datasets in which the edit distance between pairs of completions is low (such as in math-based datasets), standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. 
Using these insights, we design DPOP, a new loss function and training procedure which avoids this failure mode. 
Surprisingly, we also find that DPOP outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions.

We believe this new approach is generally useful in training across a wide range of model types and downstream use cases, and it powers all of our Smaug models. 
With the release of our paper and datasets, we are excited for the open source community to continue to build on and improve Smaug and spawn more dragons to dominate the LLM space!

Keep watching this space for our announcements!

### Evaluation Results

| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| --- | --- | --- | --- | --- | --- | --- |
|  75.12  | 74.91 | 87.70  | 70.16 | 65.96 | 81.61 | 70.36 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Smaug-Mixtral-v0.1)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |22.24|
|IFEval (0-Shot)    |55.54|
|BBH (3-Shot)       |31.92|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot)      | 6.82|
|MuSR (0-shot)      |12.99|
|MMLU-PRO (5-shot)  |26.13|