File size: 13,629 Bytes
c7a9cdd
 
 
 
 
84ccd91
 
 
 
 
 
 
 
1c49031
 
a4e1166
1c49031
84ccd91
 
 
6deb8e6
 
e40b6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ccd91
6deb8e6
84ccd91
1c49031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e1166
 
 
 
 
 
 
 
1c49031
 
 
 
 
 
 
 
 
 
 
 
bcca8ad
1c49031
e40b6f4
1c49031
 
 
 
 
 
 
 
 
 
 
e40b6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c49031
84ccd91
670b7fa
c7a9cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
library_name: transformers
tags: []
---

# Evaluation Results

## Big-Bench Hard (BBH)

Note: These results are with corrected parsing for BBH from Eleuther's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). See [this PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/2013).

#### Overall:

| Model                      | Groups | Version | Filter     | n-shot | Metric      | Value  |   | Stderr |
|----------------------------|--------|---------|------------|--------|-------------|--------|---|--------|
| **Smaug-Qwen2-72B-Instruct**   | bbh    | N/A     | get-answer | 3      | exact_match | 0.8241 | ± | 0.0042 |
| Qwen2-72B-Instruct         | bbh    | N/A     | get-answer | 3      | exact_match | 0.8036 | ± | 0.0044 |

#### Breakdown:

Smaug-Qwen2-72B-Instruct:

| Tasks                                                     | Version | Filter     | n-shot | Metric      | Value  | Stderr |
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------|
| bbh                                                       | N/A     | get-answer | 3      | exact_match | 0.8241 | 0.0042 |
| - bbh_cot_fewshot_boolean_expressions                     | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_causal_judgement                        | 2       | get-answer | 3      | exact_match | 0.6578 | 0.0348 |
| - bbh_cot_fewshot_date_understanding                      | 2       | get-answer | 3      | exact_match | 0.8360 | 0.0235 |
| - bbh_cot_fewshot_disambiguation_qa                       | 2       | get-answer | 3      | exact_match | 0.8280 | 0.0239 |
| - bbh_cot_fewshot_dyck_languages                          | 2       | get-answer | 3      | exact_match | 0.3360 | 0.0299 |
| - bbh_cot_fewshot_formal_fallacies                        | 2       | get-answer | 3      | exact_match | 0.7120 | 0.0287 |
| - bbh_cot_fewshot_geometric_shapes                        | 2       | get-answer | 3      | exact_match | 0.5320 | 0.0316 |
| - bbh_cot_fewshot_hyperbaton                              | 2       | get-answer | 3      | exact_match | 0.9880 | 0.0069 |
| - bbh_cot_fewshot_logical_deduction_five_objects          | 2       | get-answer | 3      | exact_match | 0.7680 | 0.0268 |
| - bbh_cot_fewshot_logical_deduction_seven_objects         | 2       | get-answer | 3      | exact_match | 0.5360 | 0.0316 |
| - bbh_cot_fewshot_logical_deduction_three_objects         | 2       | get-answer | 3      | exact_match | 0.9720 | 0.0105 |
| - bbh_cot_fewshot_movie_recommendation                    | 2       | get-answer | 3      | exact_match | 0.8000 | 0.0253 |
| - bbh_cot_fewshot_multistep_arithmetic_two                | 2       | get-answer | 3      | exact_match | 0.9720 | 0.0105 |
| - bbh_cot_fewshot_navigate                                | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_object_counting                         | 2       | get-answer | 3      | exact_match | 0.9200 | 0.0172 |
| - bbh_cot_fewshot_penguins_in_a_table                     | 2       | get-answer | 3      | exact_match | 0.8493 | 0.0297 |
| - bbh_cot_fewshot_reasoning_about_colored_objects         | 2       | get-answer | 3      | exact_match | 0.7560 | 0.0272 |
| - bbh_cot_fewshot_ruin_names                              | 2       | get-answer | 3      | exact_match | 0.8520 | 0.0225 |
| - bbh_cot_fewshot_salient_translation_error_detection     | 2       | get-answer | 3      | exact_match | 0.5920 | 0.0311 |
| - bbh_cot_fewshot_snarks                                  | 2       | get-answer | 3      | exact_match | 0.9101 | 0.0215 |
| - bbh_cot_fewshot_sports_understanding                    | 2       | get-answer | 3      | exact_match | 0.9440 | 0.0146 |
| - bbh_cot_fewshot_temporal_sequences                      | 2       | get-answer | 3      | exact_match | 1.0000 | 0.0000 |
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects  | 2       | get-answer | 3      | exact_match | 0.9800 | 0.0089 |
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2       | get-answer | 3      | exact_match | 0.9560 | 0.0130 |
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_web_of_lies                             | 2       | get-answer | 3      | exact_match | 1.0000 | 0.0000 |
| - bbh_cot_fewshot_word_sorting                            | 2       | get-answer | 3      | exact_match | 0.6560 | 0.0301 |

Qwen2-72B-Instruct:

| Tasks                                                     | Version | Filter     | n-shot | Metric      | Value  | Stderr |
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------|
| bbh                                                       | N/A     | get-answer | 3      | exact_match | 0.8036 | 0.0044 |
| - bbh_cot_fewshot_boolean_expressions                     | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_causal_judgement                        | 2       | get-answer | 3      | exact_match | 0.6684 | 0.0345 |
| - bbh_cot_fewshot_date_understanding                      | 2       | get-answer | 3      | exact_match | 0.8000 | 0.0253 |
| - bbh_cot_fewshot_disambiguation_qa                       | 2       | get-answer | 3      | exact_match | 0.8360 | 0.0235 |
| - bbh_cot_fewshot_dyck_languages                          | 2       | get-answer | 3      | exact_match | 0.3040 | 0.0292 |
| - bbh_cot_fewshot_formal_fallacies                        | 2       | get-answer | 3      | exact_match | 0.7480 | 0.0275 |
| - bbh_cot_fewshot_geometric_shapes                        | 2       | get-answer | 3      | exact_match | 0.4960 | 0.0317 |
| - bbh_cot_fewshot_hyperbaton                              | 2       | get-answer | 3      | exact_match | 0.9440 | 0.0146 |
| - bbh_cot_fewshot_logical_deduction_five_objects          | 2       | get-answer | 3      | exact_match | 0.6800 | 0.0296 |
| - bbh_cot_fewshot_logical_deduction_seven_objects         | 2       | get-answer | 3      | exact_match | 0.4720 | 0.0316 |
| - bbh_cot_fewshot_logical_deduction_three_objects         | 2       | get-answer | 3      | exact_match | 0.9200 | 0.0172 |
| - bbh_cot_fewshot_movie_recommendation                    | 2       | get-answer | 3      | exact_match | 0.7800 | 0.0263 |
| - bbh_cot_fewshot_multistep_arithmetic_two                | 2       | get-answer | 3      | exact_match | 0.9760 | 0.0097 |
| - bbh_cot_fewshot_navigate                                | 2       | get-answer | 3      | exact_match | 0.9520 | 0.0135 |
| - bbh_cot_fewshot_object_counting                         | 2       | get-answer | 3      | exact_match | 0.9480 | 0.0141 |
| - bbh_cot_fewshot_penguins_in_a_table                     | 2       | get-answer | 3      | exact_match | 0.5753 | 0.0410 |
| - bbh_cot_fewshot_reasoning_about_colored_objects         | 2       | get-answer | 3      | exact_match | 0.8120 | 0.0248 |
| - bbh_cot_fewshot_ruin_names                              | 2       | get-answer | 3      | exact_match | 0.8760 | 0.0209 |
| - bbh_cot_fewshot_salient_translation_error_detection     | 2       | get-answer | 3      | exact_match | 0.5880 | 0.0312 |
| - bbh_cot_fewshot_snarks                                  | 2       | get-answer | 3      | exact_match | 0.8764 | 0.0247 |
| - bbh_cot_fewshot_sports_understanding                    | 2       | get-answer | 3      | exact_match | 0.9080 | 0.0183 |
| - bbh_cot_fewshot_temporal_sequences                      | 2       | get-answer | 3      | exact_match | 0.9960 | 0.0040 |
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects  | 2       | get-answer | 3      | exact_match | 0.9160 | 0.0176 |
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2       | get-answer | 3      | exact_match | 0.9400 | 0.0151 |
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2       | get-answer | 3      | exact_match | 0.9440 | 0.0146 |
| - bbh_cot_fewshot_web_of_lies                             | 2       | get-answer | 3      | exact_match | 1.0000 | 0.0000 |
| - bbh_cot_fewshot_word_sorting                            | 2       | get-answer | 3      | exact_match | 0.6680 | 0.0298 |

## LiveCodeBench

| Model                    | Pass@1 | Easy Pass@1 | Medium Pass@1 | Hard Pass@1 |
|--------------------------|--------|-------------|---------------|-------------|
| **Smaug-Qwen2-72B-Instruct** | 0.3357 | 0.7286      | 0.1633        | 0.0000      |
| Qwen2-72B-Instruct       | 0.3139 | 0.6810      | 0.1531        | 0.0000      |


## Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. 

| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6  | (-1.8, 1.6)  | 662 |
| GPT-4o | 78.3  | (-2.4, 2.1)  | 685 |
| Gemini-1.5-pro-latest | 72.1  | (-2.3, 2.2)  | 630 |
| Claude-3-Opus-20240229 | 60.4  | (-3.3, 2.4)  | 541 |
| Smaug-Llama-3-70B-Instruct | 56.7  | (-2.2, 2.6)  | 661 |
| GPT-4-0314 | 50.0  | (-0.0, 0.0)  | 423 |
| **Smaug-Qwen2-72B-Instruct** | 48.0  | (-1.8, 2.1)  | 628 |
| Claude-3-Sonnet-20240229 | 46.8  | (-2.1, 2.2)  | 552 |
| Qwen2-72B-Instruct | 43.5  | (-2.6, 2.7)  | 531 |
| Llama-3-70B-Instruct | 41.1  | (-2.5, 2.4)  | 583 |
| GPT-4-0613 | 37.9  | (-2.2, 2.0)  | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6)  | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4  | (-2.7, 2.9)  | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2)  | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2)  | 541 |
| Mistral-Medium | 31.9  | (-2.3, 2.4)  | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0)  | 401 |

## MT-Bench

First turn

| Model                    | Turn | Score   |
|--------------------------|------|---------|
| Qwen2-72B-Instruct       | 1    | 9.18125 |
| Smaug-Qwen2-72B-Instruct | 1    | 9.05625 |

Second turn

| Model                    | Turn | Score   |
|--------------------------|------|---------|
| Qwen2-72B-Instruct       | 2    | 8.74684 |
| Smaug-Qwen2-72B-Instruct | 2    | 8.67500 |

Average

| Model                    | Score   |
|--------------------------|---------|
| Qwen2-72B-Instruct       | 8.96541 |
| Smaug-Qwen2-72B-Instruct | 8.86563 |



# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]