File size: 15,316 Bytes
c7a9cdd
91f2cea
 
c2314fd
91f2cea
 
c2314fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a9cdd
 
af01592
91f2cea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ccd91
 
 
 
 
 
 
 
1c49031
 
a4e1166
1c49031
84ccd91
 
 
6deb8e6
 
e40b6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ccd91
6deb8e6
84ccd91
1c49031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e1166
 
 
 
 
 
 
 
1c49031
 
 
 
 
 
 
 
 
 
 
 
bcca8ad
1c49031
e40b6f4
1c49031
 
 
 
 
 
 
 
 
 
 
e40b6f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2314fd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
---
language:
- en
license: other
tags:
- chat
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Smaug-Qwen2-72B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 78.25
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 56.27
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 35.35
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.88
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.18
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct
      name: Open LLM Leaderboard
---

# Smaug-Qwen2-72B-Instruct

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/NtH_6eS-yyuEgbKeiek1_.png)

# Introduction

We introduce the latest in the Smaug series - a finetune of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct)

Compared to Qwen2-72B-Instruct, Smaug has better BBH, LiveCodeBench, and Arena-Hard scores (see evaluation results below).

## How to use

The prompt format is unchanged from Qwen2-72B-Instruct.

### Use with transformers

See the snippet below for usage with Transformers:

```python
import transformers
import torch

model_id = "abacusai/Smaug-Qwen2-72B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
		messages, 
		tokenize=False, 
		add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```

# Evaluation Results

## Big-Bench Hard (BBH)

Note: These results are with corrected parsing for BBH from Eleuther's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). See [this PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/2013).

#### Overall:

| Model                      | Groups | Version | Filter     | n-shot | Metric      | Value  |   | Stderr |
|----------------------------|--------|---------|------------|--------|-------------|--------|---|--------|
| **Smaug-Qwen2-72B-Instruct**   | bbh    | N/A     | get-answer | 3      | exact_match | 0.8241 | ± | 0.0042 |
| Qwen2-72B-Instruct         | bbh    | N/A     | get-answer | 3      | exact_match | 0.8036 | ± | 0.0044 |

#### Breakdown:

Smaug-Qwen2-72B-Instruct:

| Tasks                                                     | Version | Filter     | n-shot | Metric      | Value  | Stderr |
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------|
| bbh                                                       | N/A     | get-answer | 3      | exact_match | 0.8241 | 0.0042 |
| - bbh_cot_fewshot_boolean_expressions                     | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_causal_judgement                        | 2       | get-answer | 3      | exact_match | 0.6578 | 0.0348 |
| - bbh_cot_fewshot_date_understanding                      | 2       | get-answer | 3      | exact_match | 0.8360 | 0.0235 |
| - bbh_cot_fewshot_disambiguation_qa                       | 2       | get-answer | 3      | exact_match | 0.8280 | 0.0239 |
| - bbh_cot_fewshot_dyck_languages                          | 2       | get-answer | 3      | exact_match | 0.3360 | 0.0299 |
| - bbh_cot_fewshot_formal_fallacies                        | 2       | get-answer | 3      | exact_match | 0.7120 | 0.0287 |
| - bbh_cot_fewshot_geometric_shapes                        | 2       | get-answer | 3      | exact_match | 0.5320 | 0.0316 |
| - bbh_cot_fewshot_hyperbaton                              | 2       | get-answer | 3      | exact_match | 0.9880 | 0.0069 |
| - bbh_cot_fewshot_logical_deduction_five_objects          | 2       | get-answer | 3      | exact_match | 0.7680 | 0.0268 |
| - bbh_cot_fewshot_logical_deduction_seven_objects         | 2       | get-answer | 3      | exact_match | 0.5360 | 0.0316 |
| - bbh_cot_fewshot_logical_deduction_three_objects         | 2       | get-answer | 3      | exact_match | 0.9720 | 0.0105 |
| - bbh_cot_fewshot_movie_recommendation                    | 2       | get-answer | 3      | exact_match | 0.8000 | 0.0253 |
| - bbh_cot_fewshot_multistep_arithmetic_two                | 2       | get-answer | 3      | exact_match | 0.9720 | 0.0105 |
| - bbh_cot_fewshot_navigate                                | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_object_counting                         | 2       | get-answer | 3      | exact_match | 0.9200 | 0.0172 |
| - bbh_cot_fewshot_penguins_in_a_table                     | 2       | get-answer | 3      | exact_match | 0.8493 | 0.0297 |
| - bbh_cot_fewshot_reasoning_about_colored_objects         | 2       | get-answer | 3      | exact_match | 0.7560 | 0.0272 |
| - bbh_cot_fewshot_ruin_names                              | 2       | get-answer | 3      | exact_match | 0.8520 | 0.0225 |
| - bbh_cot_fewshot_salient_translation_error_detection     | 2       | get-answer | 3      | exact_match | 0.5920 | 0.0311 |
| - bbh_cot_fewshot_snarks                                  | 2       | get-answer | 3      | exact_match | 0.9101 | 0.0215 |
| - bbh_cot_fewshot_sports_understanding                    | 2       | get-answer | 3      | exact_match | 0.9440 | 0.0146 |
| - bbh_cot_fewshot_temporal_sequences                      | 2       | get-answer | 3      | exact_match | 1.0000 | 0.0000 |
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects  | 2       | get-answer | 3      | exact_match | 0.9800 | 0.0089 |
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2       | get-answer | 3      | exact_match | 0.9560 | 0.0130 |
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_web_of_lies                             | 2       | get-answer | 3      | exact_match | 1.0000 | 0.0000 |
| - bbh_cot_fewshot_word_sorting                            | 2       | get-answer | 3      | exact_match | 0.6560 | 0.0301 |

Qwen2-72B-Instruct:

| Tasks                                                     | Version | Filter     | n-shot | Metric      | Value  | Stderr |
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------|
| bbh                                                       | N/A     | get-answer | 3      | exact_match | 0.8036 | 0.0044 |
| - bbh_cot_fewshot_boolean_expressions                     | 2       | get-answer | 3      | exact_match | 0.9640 | 0.0118 |
| - bbh_cot_fewshot_causal_judgement                        | 2       | get-answer | 3      | exact_match | 0.6684 | 0.0345 |
| - bbh_cot_fewshot_date_understanding                      | 2       | get-answer | 3      | exact_match | 0.8000 | 0.0253 |
| - bbh_cot_fewshot_disambiguation_qa                       | 2       | get-answer | 3      | exact_match | 0.8360 | 0.0235 |
| - bbh_cot_fewshot_dyck_languages                          | 2       | get-answer | 3      | exact_match | 0.3040 | 0.0292 |
| - bbh_cot_fewshot_formal_fallacies                        | 2       | get-answer | 3      | exact_match | 0.7480 | 0.0275 |
| - bbh_cot_fewshot_geometric_shapes                        | 2       | get-answer | 3      | exact_match | 0.4960 | 0.0317 |
| - bbh_cot_fewshot_hyperbaton                              | 2       | get-answer | 3      | exact_match | 0.9440 | 0.0146 |
| - bbh_cot_fewshot_logical_deduction_five_objects          | 2       | get-answer | 3      | exact_match | 0.6800 | 0.0296 |
| - bbh_cot_fewshot_logical_deduction_seven_objects         | 2       | get-answer | 3      | exact_match | 0.4720 | 0.0316 |
| - bbh_cot_fewshot_logical_deduction_three_objects         | 2       | get-answer | 3      | exact_match | 0.9200 | 0.0172 |
| - bbh_cot_fewshot_movie_recommendation                    | 2       | get-answer | 3      | exact_match | 0.7800 | 0.0263 |
| - bbh_cot_fewshot_multistep_arithmetic_two                | 2       | get-answer | 3      | exact_match | 0.9760 | 0.0097 |
| - bbh_cot_fewshot_navigate                                | 2       | get-answer | 3      | exact_match | 0.9520 | 0.0135 |
| - bbh_cot_fewshot_object_counting                         | 2       | get-answer | 3      | exact_match | 0.9480 | 0.0141 |
| - bbh_cot_fewshot_penguins_in_a_table                     | 2       | get-answer | 3      | exact_match | 0.5753 | 0.0410 |
| - bbh_cot_fewshot_reasoning_about_colored_objects         | 2       | get-answer | 3      | exact_match | 0.8120 | 0.0248 |
| - bbh_cot_fewshot_ruin_names                              | 2       | get-answer | 3      | exact_match | 0.8760 | 0.0209 |
| - bbh_cot_fewshot_salient_translation_error_detection     | 2       | get-answer | 3      | exact_match | 0.5880 | 0.0312 |
| - bbh_cot_fewshot_snarks                                  | 2       | get-answer | 3      | exact_match | 0.8764 | 0.0247 |
| - bbh_cot_fewshot_sports_understanding                    | 2       | get-answer | 3      | exact_match | 0.9080 | 0.0183 |
| - bbh_cot_fewshot_temporal_sequences                      | 2       | get-answer | 3      | exact_match | 0.9960 | 0.0040 |
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects  | 2       | get-answer | 3      | exact_match | 0.9160 | 0.0176 |
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2       | get-answer | 3      | exact_match | 0.9400 | 0.0151 |
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2       | get-answer | 3      | exact_match | 0.9440 | 0.0146 |
| - bbh_cot_fewshot_web_of_lies                             | 2       | get-answer | 3      | exact_match | 1.0000 | 0.0000 |
| - bbh_cot_fewshot_word_sorting                            | 2       | get-answer | 3      | exact_match | 0.6680 | 0.0298 |

## LiveCodeBench

| Model                    | Pass@1 | Easy Pass@1 | Medium Pass@1 | Hard Pass@1 |
|--------------------------|--------|-------------|---------------|-------------|
| **Smaug-Qwen2-72B-Instruct** | 0.3357 | 0.7286      | 0.1633        | 0.0000      |
| Qwen2-72B-Instruct       | 0.3139 | 0.6810      | 0.1531        | 0.0000      |


## Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. 

| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6  | (-1.8, 1.6)  | 662 |
| GPT-4o | 78.3  | (-2.4, 2.1)  | 685 |
| Gemini-1.5-pro-latest | 72.1  | (-2.3, 2.2)  | 630 |
| Claude-3-Opus-20240229 | 60.4  | (-3.3, 2.4)  | 541 |
| Smaug-Llama-3-70B-Instruct | 56.7  | (-2.2, 2.6)  | 661 |
| GPT-4-0314 | 50.0  | (-0.0, 0.0)  | 423 |
| **Smaug-Qwen2-72B-Instruct** | 48.0  | (-1.8, 2.1)  | 628 |
| Claude-3-Sonnet-20240229 | 46.8  | (-2.1, 2.2)  | 552 |
| Qwen2-72B-Instruct | 43.5  | (-2.6, 2.7)  | 531 |
| Llama-3-70B-Instruct | 41.1  | (-2.5, 2.4)  | 583 |
| GPT-4-0613 | 37.9  | (-2.2, 2.0)  | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6)  | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4  | (-2.7, 2.9)  | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2)  | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2)  | 541 |
| Mistral-Medium | 31.9  | (-2.3, 2.4)  | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0)  | 401 |

## MT-Bench

First turn

| Model                    | Turn | Score   |
|--------------------------|------|---------|
| Qwen2-72B-Instruct       | 1    | 9.18125 |
| Smaug-Qwen2-72B-Instruct | 1    | 9.05625 |

Second turn

| Model                    | Turn | Score   |
|--------------------------|------|---------|
| Qwen2-72B-Instruct       | 2    | 8.74684 |
| Smaug-Qwen2-72B-Instruct | 2    | 8.67500 |

Average

| Model                    | Score   |
|--------------------------|---------|
| Qwen2-72B-Instruct       | 8.96541 |
| Smaug-Qwen2-72B-Instruct | 8.86563 |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Smaug-Qwen2-72B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |41.08|
|IFEval (0-Shot)    |78.25|
|BBH (3-Shot)       |56.27|
|MATH Lvl 5 (4-Shot)|35.35|
|GPQA (0-shot)      |14.88|
|MuSR (0-shot)      |15.18|
|MMLU-PRO (5-shot)  |46.56|