|
--- |
|
language: |
|
- en |
|
license: other |
|
tags: |
|
- chat |
|
license_name: tongyi-qianwen |
|
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Smaug-Qwen2-72B-Instruct |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 78.25 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 56.27 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 35.35 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 14.88 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 15.18 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 46.56 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/Smaug-Qwen2-72B-Instruct |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Smaug-Qwen2-72B-Instruct |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/NtH_6eS-yyuEgbKeiek1_.png) |
|
|
|
# Introduction |
|
|
|
We introduce the latest in the Smaug series - a finetune of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) |
|
|
|
Compared to Qwen2-72B-Instruct, Smaug has better BBH, LiveCodeBench, and Arena-Hard scores (see evaluation results below). |
|
|
|
## How to use |
|
|
|
The prompt format is unchanged from Qwen2-72B-Instruct. |
|
|
|
### Use with transformers |
|
|
|
See the snippet below for usage with Transformers: |
|
|
|
```python |
|
import transformers |
|
import torch |
|
|
|
model_id = "abacusai/Smaug-Qwen2-72B-Instruct" |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompt = pipeline.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
terminators = [ |
|
pipeline.tokenizer.eos_token_id, |
|
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = pipeline( |
|
prompt, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.9, |
|
) |
|
print(outputs[0]["generated_text"][len(prompt):]) |
|
``` |
|
|
|
# Evaluation Results |
|
|
|
## Big-Bench Hard (BBH) |
|
|
|
Note: These results are with corrected parsing for BBH from Eleuther's [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). See [this PR](https://github.com/EleutherAI/lm-evaluation-harness/pull/2013). |
|
|
|
#### Overall: |
|
|
|
| Model | Groups | Version | Filter | n-shot | Metric | Value | | Stderr | |
|
|----------------------------|--------|---------|------------|--------|-------------|--------|---|--------| |
|
| **Smaug-Qwen2-72B-Instruct** | bbh | N/A | get-answer | 3 | exact_match | 0.8241 | ± | 0.0042 | |
|
| Qwen2-72B-Instruct | bbh | N/A | get-answer | 3 | exact_match | 0.8036 | ± | 0.0044 | |
|
|
|
#### Breakdown: |
|
|
|
Smaug-Qwen2-72B-Instruct: |
|
|
|
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
|
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------| |
|
| bbh | N/A | get-answer | 3 | exact_match | 0.8241 | 0.0042 | |
|
| - bbh_cot_fewshot_boolean_expressions | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | |
|
| - bbh_cot_fewshot_causal_judgement | 2 | get-answer | 3 | exact_match | 0.6578 | 0.0348 | |
|
| - bbh_cot_fewshot_date_understanding | 2 | get-answer | 3 | exact_match | 0.8360 | 0.0235 | |
|
| - bbh_cot_fewshot_disambiguation_qa | 2 | get-answer | 3 | exact_match | 0.8280 | 0.0239 | |
|
| - bbh_cot_fewshot_dyck_languages | 2 | get-answer | 3 | exact_match | 0.3360 | 0.0299 | |
|
| - bbh_cot_fewshot_formal_fallacies | 2 | get-answer | 3 | exact_match | 0.7120 | 0.0287 | |
|
| - bbh_cot_fewshot_geometric_shapes | 2 | get-answer | 3 | exact_match | 0.5320 | 0.0316 | |
|
| - bbh_cot_fewshot_hyperbaton | 2 | get-answer | 3 | exact_match | 0.9880 | 0.0069 | |
|
| - bbh_cot_fewshot_logical_deduction_five_objects | 2 | get-answer | 3 | exact_match | 0.7680 | 0.0268 | |
|
| - bbh_cot_fewshot_logical_deduction_seven_objects | 2 | get-answer | 3 | exact_match | 0.5360 | 0.0316 | |
|
| - bbh_cot_fewshot_logical_deduction_three_objects | 2 | get-answer | 3 | exact_match | 0.9720 | 0.0105 | |
|
| - bbh_cot_fewshot_movie_recommendation | 2 | get-answer | 3 | exact_match | 0.8000 | 0.0253 | |
|
| - bbh_cot_fewshot_multistep_arithmetic_two | 2 | get-answer | 3 | exact_match | 0.9720 | 0.0105 | |
|
| - bbh_cot_fewshot_navigate | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | |
|
| - bbh_cot_fewshot_object_counting | 2 | get-answer | 3 | exact_match | 0.9200 | 0.0172 | |
|
| - bbh_cot_fewshot_penguins_in_a_table | 2 | get-answer | 3 | exact_match | 0.8493 | 0.0297 | |
|
| - bbh_cot_fewshot_reasoning_about_colored_objects | 2 | get-answer | 3 | exact_match | 0.7560 | 0.0272 | |
|
| - bbh_cot_fewshot_ruin_names | 2 | get-answer | 3 | exact_match | 0.8520 | 0.0225 | |
|
| - bbh_cot_fewshot_salient_translation_error_detection | 2 | get-answer | 3 | exact_match | 0.5920 | 0.0311 | |
|
| - bbh_cot_fewshot_snarks | 2 | get-answer | 3 | exact_match | 0.9101 | 0.0215 | |
|
| - bbh_cot_fewshot_sports_understanding | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 | |
|
| - bbh_cot_fewshot_temporal_sequences | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 | |
|
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects | 2 | get-answer | 3 | exact_match | 0.9800 | 0.0089 | |
|
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2 | get-answer | 3 | exact_match | 0.9560 | 0.0130 | |
|
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | |
|
| - bbh_cot_fewshot_web_of_lies | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 | |
|
| - bbh_cot_fewshot_word_sorting | 2 | get-answer | 3 | exact_match | 0.6560 | 0.0301 | |
|
|
|
Qwen2-72B-Instruct: |
|
|
|
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
|
|-----------------------------------------------------------|---------|------------|--------|-------------|--------|--------| |
|
| bbh | N/A | get-answer | 3 | exact_match | 0.8036 | 0.0044 | |
|
| - bbh_cot_fewshot_boolean_expressions | 2 | get-answer | 3 | exact_match | 0.9640 | 0.0118 | |
|
| - bbh_cot_fewshot_causal_judgement | 2 | get-answer | 3 | exact_match | 0.6684 | 0.0345 | |
|
| - bbh_cot_fewshot_date_understanding | 2 | get-answer | 3 | exact_match | 0.8000 | 0.0253 | |
|
| - bbh_cot_fewshot_disambiguation_qa | 2 | get-answer | 3 | exact_match | 0.8360 | 0.0235 | |
|
| - bbh_cot_fewshot_dyck_languages | 2 | get-answer | 3 | exact_match | 0.3040 | 0.0292 | |
|
| - bbh_cot_fewshot_formal_fallacies | 2 | get-answer | 3 | exact_match | 0.7480 | 0.0275 | |
|
| - bbh_cot_fewshot_geometric_shapes | 2 | get-answer | 3 | exact_match | 0.4960 | 0.0317 | |
|
| - bbh_cot_fewshot_hyperbaton | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 | |
|
| - bbh_cot_fewshot_logical_deduction_five_objects | 2 | get-answer | 3 | exact_match | 0.6800 | 0.0296 | |
|
| - bbh_cot_fewshot_logical_deduction_seven_objects | 2 | get-answer | 3 | exact_match | 0.4720 | 0.0316 | |
|
| - bbh_cot_fewshot_logical_deduction_three_objects | 2 | get-answer | 3 | exact_match | 0.9200 | 0.0172 | |
|
| - bbh_cot_fewshot_movie_recommendation | 2 | get-answer | 3 | exact_match | 0.7800 | 0.0263 | |
|
| - bbh_cot_fewshot_multistep_arithmetic_two | 2 | get-answer | 3 | exact_match | 0.9760 | 0.0097 | |
|
| - bbh_cot_fewshot_navigate | 2 | get-answer | 3 | exact_match | 0.9520 | 0.0135 | |
|
| - bbh_cot_fewshot_object_counting | 2 | get-answer | 3 | exact_match | 0.9480 | 0.0141 | |
|
| - bbh_cot_fewshot_penguins_in_a_table | 2 | get-answer | 3 | exact_match | 0.5753 | 0.0410 | |
|
| - bbh_cot_fewshot_reasoning_about_colored_objects | 2 | get-answer | 3 | exact_match | 0.8120 | 0.0248 | |
|
| - bbh_cot_fewshot_ruin_names | 2 | get-answer | 3 | exact_match | 0.8760 | 0.0209 | |
|
| - bbh_cot_fewshot_salient_translation_error_detection | 2 | get-answer | 3 | exact_match | 0.5880 | 0.0312 | |
|
| - bbh_cot_fewshot_snarks | 2 | get-answer | 3 | exact_match | 0.8764 | 0.0247 | |
|
| - bbh_cot_fewshot_sports_understanding | 2 | get-answer | 3 | exact_match | 0.9080 | 0.0183 | |
|
| - bbh_cot_fewshot_temporal_sequences | 2 | get-answer | 3 | exact_match | 0.9960 | 0.0040 | |
|
| - bbh_cot_fewshot_tracking_shuffled_objects_five_objects | 2 | get-answer | 3 | exact_match | 0.9160 | 0.0176 | |
|
| - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects | 2 | get-answer | 3 | exact_match | 0.9400 | 0.0151 | |
|
| - bbh_cot_fewshot_tracking_shuffled_objects_three_objects | 2 | get-answer | 3 | exact_match | 0.9440 | 0.0146 | |
|
| - bbh_cot_fewshot_web_of_lies | 2 | get-answer | 3 | exact_match | 1.0000 | 0.0000 | |
|
| - bbh_cot_fewshot_word_sorting | 2 | get-answer | 3 | exact_match | 0.6680 | 0.0298 | |
|
|
|
## LiveCodeBench |
|
|
|
| Model | Pass@1 | Easy Pass@1 | Medium Pass@1 | Hard Pass@1 | |
|
|--------------------------|--------|-------------|---------------|-------------| |
|
| **Smaug-Qwen2-72B-Instruct** | 0.3357 | 0.7286 | 0.1633 | 0.0000 | |
|
| Qwen2-72B-Instruct | 0.3139 | 0.6810 | 0.1531 | 0.0000 | |
|
|
|
|
|
## Arena-Hard |
|
|
|
Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. |
|
|
|
| Model | Score | 95% Confidence Interval | Average Tokens | |
|
| :---- | ---------: | ----------: | ------: | |
|
| GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 | |
|
| GPT-4o | 78.3 | (-2.4, 2.1) | 685 | |
|
| Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 | |
|
| Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 | |
|
| Smaug-Llama-3-70B-Instruct | 56.7 | (-2.2, 2.6) | 661 | |
|
| GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 | |
|
| **Smaug-Qwen2-72B-Instruct** | 48.0 | (-1.8, 2.1) | 628 | |
|
| Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 | |
|
| Qwen2-72B-Instruct | 43.5 | (-2.6, 2.7) | 531 | |
|
| Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 | |
|
| GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 | |
|
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 | |
|
| Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 | |
|
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 | |
|
| Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 | |
|
| Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 | |
|
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 | |
|
|
|
## MT-Bench |
|
|
|
First turn |
|
|
|
| Model | Turn | Score | |
|
|--------------------------|------|---------| |
|
| Qwen2-72B-Instruct | 1 | 9.18125 | |
|
| Smaug-Qwen2-72B-Instruct | 1 | 9.05625 | |
|
|
|
Second turn |
|
|
|
| Model | Turn | Score | |
|
|--------------------------|------|---------| |
|
| Qwen2-72B-Instruct | 2 | 8.74684 | |
|
| Smaug-Qwen2-72B-Instruct | 2 | 8.67500 | |
|
|
|
Average |
|
|
|
| Model | Score | |
|
|--------------------------|---------| |
|
| Qwen2-72B-Instruct | 8.96541 | |
|
| Smaug-Qwen2-72B-Instruct | 8.86563 | |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__Smaug-Qwen2-72B-Instruct) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |41.08| |
|
|IFEval (0-Shot) |78.25| |
|
|BBH (3-Shot) |56.27| |
|
|MATH Lvl 5 (4-Shot)|35.35| |
|
|GPQA (0-shot) |14.88| |
|
|MuSR (0-shot) |15.18| |
|
|MMLU-PRO (5-shot) |46.56| |
|
|
|
|