ppo-LunarLander-v2 / config.json
abbanf's picture
initial commit
57bafc4 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7801d07877f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7801d0787880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7801d0787910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7801d07879a0>", "_build": "<function ActorCriticPolicy._build at 0x7801d0787a30>", "forward": "<function ActorCriticPolicy.forward at 0x7801d0787ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7801d0787b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7801d0787be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7801d0787c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7801d0787d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7801d0787d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7801d0787e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7801d07022c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733048173641692268, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3FC74xBzw++Re6vXXIgr7WG3+9btqNPAAAAAAAAAAAI9dVvuum2D0rxQs+vHMkvkQ/bbzH8KO8AAAAAAAAAADqWuq+EE70Pq3iW7zLxLy+/B4fviWK2z0AAAAAAAAAAKaJkT5czGI9QEgLvjJPTb4urOE8HukqPQAAAAAAAAAAzYdqPSmsQLrgKNG1F/2NsN/pELudMvg0AACAPwAAgD+mGLe9YXmSP87foL5XCDC/YsqMvWZZX70AAAAAAAAAAGCqNb6x1A880K6kPTOsqrtyQp69ihugPAAAgD8AAIA/Ta+vvScXJj70F4I9WcxgvhU0nTxrJYY6AAAAAAAAAABAJ9E+C+6GP4NbzT7Hpwi/9OGaPg7lTL0AAAAAAAAAAE1/jj1gPVE/mkAAPvN0F78z9kE9KfMhvAAAAAAAAAAAM2IFvTyTJT3t6c29iXkgvuSNEL0xJBW7AAAAAAAAAAAmo1K+uDaiP0KJH79CUBe/EWLeva7Aib0AAAAAAAAAAA0hqb5YXsg9ggaOPkQHP77NIyw9Fe2XPQAAAAAAAAAAtVisvljQn71B2pq5lvuUuBcwyT5DUp04AACAPwAAgD+w9a2+dBWEPXIPvDd0zkq2iaBovusGCLcAAIA/AACAP81yeL1Wlic9a5oYvGoIPr54rv28i30svAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/2p5NXYDmMAWyUS+WMAXSUR0CW8EaN+9amdX2UKGgGR0BkWkDB/I8yaAdN6ANoCEdAlvBwCKaXr3V9lChoBkdAcJsgRsdkrmgHTSoBaAhHQJbwefWcz691fZQoaAZHQG9/RP420iRoB0voaAhHQJbxF2icoYx1fZQoaAZHQHG8jYNAkcFoB01gAWgIR0CW8YbXHzYmdX2UKGgGR0BwW7+BH09RaAdL5GgIR0CW8i2FFlTWdX2UKGgGR0BvF0q8UVSGaAdLyGgIR0CW8kaPjn3ddX2UKGgGR0BwBRYZEUj+aAdL9WgIR0CW8xmr8zhxdX2UKGgGR0BIjdTo+wC9aAdLkmgIR0CW9NtUn5SFdX2UKGgGR0Bw6JN+LFXJaAdL+mgIR0CW9xAJ9iMHdX2UKGgGR0Bt3WiHqNZNaAdNDwFoCEdAlvdU5EMLGHV9lChoBkdAbDNH80k4WGgHTVwBaAhHQJb4JVOsT391fZQoaAZHQFwkkDp1RtRoB03oA2gIR0CW+M51eSjhdX2UKGgGR0BywK3ocJdCaAdL/WgIR0CW+SfaYeDGdX2UKGgGR0BwlA2Jiy6daAdLy2gIR0CW+qQz1scidX2UKGgGR0BvKuEPDpC8aAdL9WgIR0CW+wRpUPxydX2UKGgGR0BDyqmj0tiAaAdLqWgIR0CW+2OU+s5odX2UKGgGR0Bv899lVcUuaAdNXQFoCEdAlvx6CYkVvnV9lChoBkdAcVD96kZaV2gHTTMBaAhHQJb8egOBlMB1fZQoaAZHQGWSVmBe5WloB00IAmgIR0CW/JzLfUF0dX2UKGgGR0BjlfSOR1YAaAdN8QFoCEdAlv50/SpiqnV9lChoBkdAXyXWDpTuOWgHTegDaAhHQJb+i43FUAF1fZQoaAZHQHABbJfYzzpoB0vwaAhHQJb/pxzaK1p1fZQoaAZHQG8Lygf2bodoB0v7aAhHQJcA1Etuk1x1fZQoaAZHQHBM5G4I8hdoB00TAWgIR0CXAPeIVM24dX2UKGgGR0BuqwSBbwBpaAdNwwFoCEdAlwH96C17Y3V9lChoBkdAbPxXNC7btmgHS+1oCEdAlwNLdadMCnV9lChoBkdAbqyo3Jgb62gHS9xoCEdAlwPCwW3z+XV9lChoBkdAbrfAY51eSmgHS+loCEdAlwRe/+Kjz3V9lChoBkdAcbNTWXkYGmgHTSoBaAhHQJcFMUKzAvd1fZQoaAZHQGbOlwcYIjZoB01nAWgIR0CXBTrd30PIdX2UKGgGR0BxGN5AyEcsaAdNHQFoCEdAlwYNutOmBXV9lChoBkdAaHblMh5gPWgHTc8CaAhHQJcGOMrEtNB1fZQoaAZHQG2xzBAOav1oB00BAWgIR0CXBwhUipvQdX2UKGgGR0BqMQtxuKoAaAdNcgFoCEdAlwclOsT37HV9lChoBkdAcExKs+3YtmgHS+RoCEdAlwdM9nscAHV9lChoBkdAa2z4C6pYLmgHTR8BaAhHQJcIL3sXzlN1fZQoaAZHQHBUK8Hv+fhoB0vnaAhHQJcI/dcjZ+R1fZQoaAZHQHBSm/WUbDNoB0vnaAhHQJcKNBiTdLx1fZQoaAZHQG9a6EJ0GNdoB0vzaAhHQJcN1ib2Dg91fZQoaAZHQG3To/qxC6ZoB013AWgIR0CXD2sI3R5UdX2UKGgGR0BxiBwQ176YaAdNCgFoCEdAlxBNZzPrwHV9lChoBkdAcMYVRUFSsWgHS+NoCEdAlxF5nL7oCHV9lChoBkdAbC1uqFRHgGgHS/JoCEdAlxIKhg3Lm3V9lChoBkdAb9KQ9zOopGgHS+loCEdAlxILVJ+UhXV9lChoBkdAdGMg1FYuCmgHTRQBaAhHQJcSZFG5MDh1fZQoaAZHQG+DJQLux8loB0vnaAhHQJcUGFWXC0p1fZQoaAZHQHA4GfK6nR9oB0vWaAhHQJcUsLgGbCt1fZQoaAZHQGF5LMTviLloB03oA2gIR0CXFwcawUxmdX2UKGgGR0BylrdbgTAWaAdNAwFoCEdAlxlTS9du53V9lChoBkdAcNCUQ04zamgHS95oCEdAlxqDq8lHBnV9lChoBkdAcNYc/+sHSmgHS+hoCEdAlxtbmdRR/HV9lChoBkdAYZBof0VafWgHTUcCaAhHQJcbWrMkhRt1fZQoaAZHQHAC0Hpr1uloB0voaAhHQJcboSIxgzB1fZQoaAZHQHOx8SwnpjdoB00hAWgIR0CXG6j9n9NvdX2UKGgGR0BxVVDBuXNUaAdL2GgIR0CXHE21D0DmdX2UKGgGR0BvYJxJd0JXaAdL4WgIR0CXHSoUSIxhdX2UKGgGR0BxEgDyOJcgaAdL3mgIR0CXH14VymygdX2UKGgGR0BjiqtYB/7SaAdN6ANoCEdAlx/BnezlcXV9lChoBkdAY+rTDO1OTWgHTX8CaAhHQJcgQHSnccl1fZQoaAZHQGc8HYQJ5VxoB03PAWgIR0CXIpoRqXWwdX2UKGgGR0Buk4ZGax5caAdL3GgIR0CXIqS2Yv38dX2UKGgGR0Bw32oVEd/8aAdNBgFoCEdAlyMFZxJd0XV9lChoBkdAcMnT9KmKqGgHS89oCEdAlyMsBEKE4HV9lChoBkdAbZrK5CngpGgHS91oCEdAlyNmbG3nZHV9lChoBkdAcHQhY/3WWmgHS+VoCEdAlyPo4+8oQXV9lChoBkdAb4nphWo3rGgHS/BoCEdAlyTf3N9piHV9lChoBkdAaJUuKXOW0WgHTQ8CaAhHQJcl4ByS3b51fZQoaAZHQHFEnoTwlSloB0vdaAhHQJcnDKW9lEt1fZQoaAZHQHOAcQqZtvZoB00fAWgIR0CXJ0Y8Md92dX2UKGgGR0BwuMe+23KCaAdL9mgIR0CXKFKc/dIodX2UKGgGR0Bte2BH09QoaAdNFwFoCEdAlyoRjOLR8nV9lChoBkdAZHbsfJV81GgHTegDaAhHQJcqtREWqLl1fZQoaAZHQG5XZPVNHpdoB0vgaAhHQJcrQgHNX5p1fZQoaAZHQG2Noy0rsjVoB0v8aAhHQJcrcSg5BC51fZQoaAZHQHGrVVPva11oB0vcaAhHQJcrorGza9N1fZQoaAZHQGJgtM495hVoB03oA2gIR0CXK/kuHvc8dX2UKGgGR0BwQ+qHXVbzaAdL3mgIR0CXLIpb2USqdX2UKGgGR0Bxza/7BO58aAdNIAFoCEdAlyzN0zTF2nV9lChoBkdAchhSPluFYmgHTR0BaAhHQJcs2qp97Wx1fZQoaAZHQHH/EoBq9GtoB01GAWgIR0CXLYJF9a2XdX2UKGgGR0Bxm30nPVuraAdLvmgIR0CXLZNWU8msdX2UKGgGR0BxQLqkdmxuaAdLxGgIR0CXLZBDohZAdX2UKGgGR0BTzENrj5sTaAdN6ANoCEdAly5VMIu5BnV9lChoBkdAbuTYcNpdr2gHS9RoCEdAlzAGvKU3XXV9lChoBkdAcKJRAbADaGgHTQQBaAhHQJcwDJA+pwV1fZQoaAZHQHHlJ0KZ2IRoB0vyaAhHQJcxZMZgogF1fZQoaAZHQGz6mQSzw+doB0vzaAhHQJcyFtNzr/t1fZQoaAZHQHDW6POpsGhoB0vWaAhHQJcyqLVFx4p1fZQoaAZHQHKGarJbMX9oB00RAWgIR0CXMt1P3ztkdX2UKGgGR0BxpXBzmwJPaAdLw2gIR0CXMvOymhugdX2UKGgGR0ByNvK1XvH+aAdNCwFoCEdAlzMHyVfNRnV9lChoBkdAb+arHU+cIGgHS8poCEdAlzMWXb/OuHV9lChoBkdAcbPbiqABk2gHS/loCEdAlzNiRW912nV9lChoBkdAcAdx7RfF72gHTRIBaAhHQJc0Xdk8Rth1fZQoaAZHQGoITRQaaThoB03vAWgIR0CXNNEmY0EYdX2UKGgGR0Bwyo+mm+CcaAdLw2gIR0CXNcifxtpFdX2UKGgGR0BtNMhcJMQFaAdNcAFoCEdAlzY4PK+zt3V9lChoBkdAc1TcpsoDxWgHTSQBaAhHQJc2nH/95yF1fZQoaAZHQHAyS3ocJdBoB0u7aAhHQJc2zZuhsZZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}