abcp4 commited on
Commit
b8feaec
1 Parent(s): 6be389f

Initial commit

Browse files
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -755.96 +/- 225.20
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -891.37 +/- 122.88
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
a2c-HalfCheetahBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9f3336148f377c8a24638547595e269e071a68cec3a244343ff51785156ba524
3
- size 123690
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8ccde5bdff0f436ec703b4ff5043c73ba4bd0a20bf5e34cb9f0ad77837e9aa8
3
+ size 123640
a2c-HalfCheetahBulletEnv-v0/data CHANGED
@@ -58,12 +58,12 @@
58
  "_np_random": null
59
  },
60
  "n_envs": 1,
61
- "num_timesteps": 2000000,
62
  "_total_timesteps": 2000000,
63
  "_num_timesteps_at_start": 0,
64
  "seed": null,
65
  "action_noise": null,
66
- "start_time": 1659810005.689662,
67
  "learning_rate": 0.00096,
68
  "tensorboard_log": "./tensorboard",
69
  "lr_schedule": {
@@ -72,26 +72,26 @@
72
  },
73
  "_last_obs": {
74
  ":type:": "<class 'numpy.ndarray'>",
75
- ":serialized:": "gASV8gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNoAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC3A5G+AAAAAEEoj70AAAAA9G5svgAAAACa028+AAAAALNmKr0AAAAAYeSjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
76
  },
77
  "_last_episode_starts": {
78
  ":type:": "<class 'numpy.ndarray'>",
79
- ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
80
  },
81
  "_last_original_obs": null,
82
  "_episode_num": 0,
83
  "use_sde": true,
84
  "sde_sample_freq": -1,
85
- "_current_progress_remaining": 0.0,
86
  "ep_info_buffer": {
87
  ":type:": "<class 'collections.deque'>",
88
- ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIwMmfAbhm6MAWyUTegDjAF0lEdAs3rm5I6KcnV9lChoBkfAkIWg+Y+jd2gHTegDaAhHQLN9daBZpzt1fZQoaAZHwJAaXrpqynloB03oA2gIR0CzgAEsvqTsdX2UKGgGR8CFwnCa7VawaAdN6ANoCEdAs4KRq59Vm3V9lChoBkfAjHxNZvDP4WgHTegDaAhHQLOFLe+Eh7p1fZQoaAZHwJTkKTr3TNNoB03oA2gIR0Czh89LlFMJdX2UKGgGR8CUeGSPU8V6aAdN6ANoCEdAs4pzHggow3V9lChoBkfAktQZgogFHWgHTegDaAhHQLONDeCkGiZ1fZQoaAZHwIiVMiB5HExoB03oA2gIR0Czj6IClrM1dX2UKGgGR8CB2MV4X40uaAdN6ANoCEdAs5I2BPKuCHV9lChoBkfAiOe3DvVmSWgHTegDaAhHQLOUxOU+s5p1fZQoaAZHwHh8Bhc7hehoB03oA2gIR0Czl1SGWUr1dX2UKGgGR8Brf/fVI7NjaAdN6ANoCEdAs5nySNfgJnV9lChoBkfAhUR2ETQE6mgHTegDaAhHQLOch8yvcJt1fZQoaAZHwHUFrcfvF3poB03oA2gIR0CznxqUzKs/dX2UKGgGR8CQnTpYcNpeaAdN6ANoCEdAs6Gqj3225XV9lChoBkfAgaTVoYekpWgHTegDaAhHQLOkOV/c32p1fZQoaAZHwIilsPvrnkloB03oA2gIR0CzpskSuhbodX2UKGgGR8CPysPLgXMyaAdN6ANoCEdAs6lTHktEonV9lChoBkfAjduQKa5PM2gHTegDaAhHQLOr5XiR4hV1fZQoaAZHwIcEatxMnJFoB03oA2gIR0Czrn1H4GlidX2UKGgGR8CNyciyprDZaAdN6ANoCEdAs7EPEm6XjXV9lChoBkfAhBt7PQfIS2gHTegDaAhHQLOznLowEhd1fZQoaAZHwIWDiRB/qgRoB03oA2gIR0Czti4nOSntdX2UKGgGR8B2/xrP+n63aAdN6ANoCEdAs7jRQhwEQ3V9lChoBkfAezErwOOKfmgHTegDaAhHQLO7aAMUh3d1fZQoaAZHwISw9pudf9hoB03oA2gIR0Czvfey3Td+dX2UKGgGR8B0as0DU3GXaAdN6ANoCEdAs8CAh5gPVnV9lChoBkfAeEt5e7cwg2gHTegDaAhHQLPDHBBRhtt1fZQoaAZHwIorriOvMbFoB03oA2gIR0Czxae5jH4odX2UKGgGR8CLNSXrMTviaAdN6ANoCEdAs8g3ZpSJj3V9lChoBkfAfxWcs189fWgHTegDaAhHQLPKxOBDohZ1fZQoaAZHwIRt74cm0E5oB03oA2gIR0CzzVhew9q2dX2UKGgGR8CDTb/rjYI0aAdN6ANoCEdAs8/lLcsUZnV9lChoBkfAiG1WyLQ5WGgHTegDaAhHQLPSaxdpqRF1fZQoaAZHwI9UVBOYYzloB03oA2gIR0Cz1PexGDtgdX2UKGgGR8CLOFV2A5JcaAdN6ANoCEdAs9eM5CF9KHV9lChoBkfAhANmtQsPKGgHTegDaAhHQLPaGa9K28Z1fZQoaAZHwIutdxp+MIhoB03oA2gIR0Cz3KmVVxS6dX2UKGgGR8CKbFbMX7+DaAdN6ANoCEdAs986Gj9GZ3V9lChoBkfAjC2Y5T6zmmgHTegDaAhHQLPhyVZLZjB1fZQoaAZHwIW0779AHFBoB03oA2gIR0Cz5FBxtHhCdX2UKGgGR8CFxjUDuBtlaAdN6ANoCEdAs+bcY2sJY3V9lChoBkfAhtp3LeQ+2WgHTegDaAhHQLPpaX9BKL91fZQoaAZHwIow3QMQVbloB03oA2gIR0Cz6/aUA1ejdX2UKGgGR8CDI9YkmhM8aAdN6ANoCEdAs+53l4keIXV9lChoBkfAjQFWGATZhGgHTegDaAhHQLPxAR3NcGF1fZQoaAZHwIyAbp3X7LtoB03oA2gIR0Cz84jRplBhdX2UKGgGR8CL/6Ut7KJVaAdN6ANoCEdAs/Yi0x/NJXV9lChoBkfAi9AiqABkqmgHTegDaAhHQLP4rNNrTH91fZQoaAZHwIxuUXWOIZZoB03oA2gIR0Cz+zRQizLPdX2UKGgGR8CJAMKv3ai9aAdN6ANoCEdAs/3CX7cfvHV9lChoBkfAiOPpYcNpd2gHTegDaAhHQLQAVDQJHAh1fZQoaAZHwIQfMMEzO5doB03oA2gIR0C0AuoOYplSdX2UKGgGR8CFlvY/3WWhaAdN6ANoCEdAtAWBhgE2YXV9lChoBkfAgXrCLVFx42gHTegDaAhHQLQIG2nbZe11fZQoaAZHwIYdUZJkGzNoB03oA2gIR0C0Cq18b70ndX2UKGgGR8CEwc2zfJmvaAdN6ANoCEdAtA01oexOcnV9lChoBkfAjctj1PFefWgHTegDaAhHQLQPv9l2/zt1fZQoaAZHwIOxGyiVSoBoB03oA2gIR0C0Ek2c4HX3dX2UKGgGR8CK0z3g1m8NaAdN6ANoCEdAtBTgcuJ1q3V9lChoBkfAhEXJQLux8mgHTegDaAhHQLQXcoXbdrR1fZQoaAZHwInG7jYI0IloB03oA2gIR0C0GfdkBjnWdX2UKGgGR8CG0F0W/JvHaAdN6ANoCEdAtBx+0AtFrnV9lChoBkfAhqke8wpOOGgHTegDaAhHQLQfDtAs0551fZQoaAZHwIhEORs/IKdoB03oA2gIR0C0IZy6xxDLdX2UKGgGR8CEOf0th/iHaAdN6ANoCEdAtCQpaHKwIXV9lChoBkfAh1lK4hEBsGgHTegDaAhHQLQmtBguyu91fZQoaAZHwJI1S7xusLhoB03oA2gIR0C0KT6eCkGidX2UKGgGR8CMsf05EMLGaAdN6ANoCEdAtCvGBYmsvXV9lChoBkfAhyzzgVGkOGgHTegDaAhHQLQuRC+UQkJ1fZQoaAZHwIYhlD2JzkpoB03oA2gIR0C0MMu4oZyddX2UKGgGR8CXXoVWS2YwaAdN6ANoCEdAtDN062fCh3V9lChoBkfAl/k7VawD/2gHTegDaAhHQLQ2JAR02cd1fZQoaAZHwIUPohQm/nJoB03oA2gIR0C0OK8NMGordX2UKGgGR8CMiZl7MPjGaAdN6ANoCEdAtDtGi22G7HV9lChoBkfAiMoEd/8VHmgHTegDaAhHQLQ91rDIikh1fZQoaAZHwIRschgVoHtoB03oA2gIR0C0QFuO801qdX2UKGgGR8CPJRLBbfP5aAdN6ANoCEdAtELovDgqE3V9lChoBkfAjbvgXVLBbmgHTegDaAhHQLRFcI8QqZt1fZQoaAZHwIsdv4qPOptoB03oA2gIR0C0R/5c1O0tdX2UKGgGR8CHMJk0aZQYaAdN6ANoCEdAtEqGd4FA3XV9lChoBkfAihHN21UlzGgHTegDaAhHQLRNDYLLIPt1fZQoaAZHwIK5UcGTs6doB03oA2gIR0C0T5KrilzmdX2UKGgGR8CFFE77Kq4paAdN6ANoCEdAtFIzeZXuE3V9lChoBkfAjblsn7YTTWgHTegDaAhHQLRUx6D5CWx1fZQoaAZHwIwnYFV1fVtoB03oA2gIR0C0V1bCaZx8dX2UKGgGR8CFkgiRGMGYaAdN6ANoCEdAtFnkEt/WlXV9lChoBkfAgpS/BFd9lWgHTegDaAhHQLRceRx95Qh1fZQoaAZHwIoNNucc2itoB03oA2gIR0C0XwnRCx/vdX2UKGgGR8CJrOXAuZkTaAdN6ANoCEdAtGGY2606YHV9lChoBkfAir9IsyzolmgHTegDaAhHQLRkGkaMrEt1fZQoaAZHwJCeaPFNtZVoB03oA2gIR0C0ZqqS1Vo6dX2UKGgGR8CGPsCSzPa+aAdN6ANoCEdAtGk2TdLxqnV9lChoBkfAibHRlg+hXmgHTegDaAhHQLRrwqsEJSl1fZQoaAZHwIJWcd1dPcloB03oA2gIR0C0bkfDcdo4dX2UKGgGR8CD+/3JxNqQaAdN6ANoCEdAtHDcCaJAMXV9lChoBkfAgGekQGwA2mgHTegDaAhHQLRzbXf642F1fZQoaAZHwH4jwumJm/ZoB03oA2gIR0C0dfq/yoXLdX2UKGgGR8CBoT1QIldDaAdN6ANoCEdAtHiIdQwbl3VlLg=="
89
  },
90
  "ep_success_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
  },
94
- "_n_updates": 250000,
95
  "n_steps": 8,
96
  "gamma": 0.99,
97
  "gae_lambda": 0.9,
 
58
  "_np_random": null
59
  },
60
  "n_envs": 1,
61
+ "num_timesteps": 482142,
62
  "_total_timesteps": 2000000,
63
  "_num_timesteps_at_start": 0,
64
  "seed": null,
65
  "action_noise": null,
66
+ "start_time": 1659817355.5288627,
67
  "learning_rate": 0.00096,
68
  "tensorboard_log": "./tensorboard",
69
  "lr_schedule": {
 
72
  },
73
  "_last_obs": {
74
  ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASV8gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNop0lJvgAAAAAAAIA/AAqAvgAAAADFg7M+AAAAgARU6D5apj++IFTovg/BhL880jQ+HnCaP89x+76gAf69CqoOv7cigL+Iyuo7Rx+AP1Cax7sAAAAAAACAPwAAgD8AAIA/AAAAAAAAAACUdJRiLg=="
76
  },
77
  "_last_episode_starts": {
78
  ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
80
  },
81
  "_last_original_obs": null,
82
  "_episode_num": 0,
83
  "use_sde": true,
84
  "sde_sample_freq": -1,
85
+ "_current_progress_remaining": 0.7589319999999999,
86
  "ep_info_buffer": {
87
  ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH85VwPy0+MAWyUTegDjAF0lEdAjxFdugpSaXV9lChoBkdAZ5wdRR/EwWgHTegDaAhHQI8lt2HLzPN1fZQoaAZHQGxLDoQnQY1oB03oA2gIR0CPOdaCcwxndX2UKGgGR0B2bG8mKIi1aAdN6ANoCEdAj03u2JBPbnV9lChoBkdAbMISSNfgJmgHTegDaAhHQI9iPLxI8Qt1fZQoaAZHQHADOIZZSvVoB03oA2gIR0CPdoJLM9r5dX2UKGgGR0BjtgO2AoXsaAdN6ANoCEdAj4rrftQbdnV9lChoBkdAQf/6hxo7FWgHTegDaAhHQI+fIicG1QZ1fZQoaAZHQHgdcqvvBrNoB03oA2gIR0CPs3XVbzK+dX2UKGgGR0B11a0D2alUaAdN6ANoCEdAj8fTn7pFC3V9lChoBkdAdOuwI+nqFGgHTegDaAhHQI/ceT7l7t11fZQoaAZHQGwaPL5hz/9oB03oA2gIR0CP8Oqo60Y1dX2UKGgGR0BlQBML4N7TaAdN6ANoCEdAkAK6BVdX1nV9lChoBkdAbHgk1uR9w2gHTegDaAhHQJAM4ogFHJ91fZQoaAZHQHbS0XDWK/FoB03oA2gIR0CQFzyVv/BFdX2UKGgGR0BrU4jD8+A3aAdN6ANoCEdAkCFwuAZsK3V9lChoBkdAcuL5cC5mRWgHTegDaAhHQJArvaakRBh1fZQoaAZHQHQ98+V1Oj9oB03oA2gIR0CQNgAGSpzcdX2UKGgGR0B0jSlbeMyaaAdN6ANoCEdAkEBuwTufEnV9lChoBkdAbCwwudwvQGgHTegDaAhHQJBKk8p1A7h1fZQoaAZHQHrNgXQ+lj5oB03oA2gIR0CQVNJzT4L1dX2UKGgGR0B1jEsg+yJLaAdN6ANoCEdAkF8+tW+49XV9lChoBkdAdw4tQbdadWgHTegDaAhHQJBpkh1Tzd11fZQoaAZHQGcqAQpWmxdoB03oA2gIR0CQc9bKzRhMdX2UKGgGR0B3L2KhtcfOaAdN6ANoCEdAkH4Vj3Ehq3V9lChoBkdAdOVhcJMQE2gHTegDaAhHQJCIaH+Idlx1fZQoaAZHQHo0ovrWy1NoB03oA2gIR0CQksW6bvw3dX2UKGgGR0B9ODtVrAP/aAdN6ANoCEdAkJ0VPN3W4HV9lChoBkdAfu4lQ/HHWGgHTegDaAhHQJCnqWLP2PF1fZQoaAZHQHz9++VTrE9oB03oA2gIR0CQsdhsZYPodX2UKGgGR0B6hpYZEUj+aAdN6ANoCEdAkLxSHuZ1FHV9lChoBkdAgVzNU4rBkGgHTegDaAhHQJDGkNmUW2x1fZQoaAZHQIEStH6MzdloB03oA2gIR0CQ0M5pJwsHdX2UKGgGR0CBtJ2saKk3aAdN6ANoCEdAkNsiM1jy4HV9lChoBkdAgQYz5XU6P2gHTegDaAhHQJDlioLofSx1fZQoaAZHQIKEX5LytmtoB03oA2gIR0CQ776ClJpWdX2UKGgGR0CDmT39rGipaAdN6ANoCEdAkPnwmu1WsHV9lChoBkdAe7nepGWldmgHTegDaAhHQJEEFqO938p1fZQoaAZHQGwcf1g6U7loB03oA2gIR0CRDnlOoHcDdX2UKGgGR0A/T94NZvDQaAdN6ANoCEdAkRjVfiPyTnV9lChoBkdAfWWQEZBLPGgHTegDaAhHQJEjGOcUdrB1fZQoaAZHQH4tzJp35etoB03oA2gIR0CRLVlMRHwxdX2UKGgGR0B1sXg3tKI0aAdN6ANoCEdAkTe7jtG/e3V9lChoBkdAW6s9hZyMk2gHTegDaAhHQJFBzA44p+d1fZQoaAZHQHCKcF2V3UxoB03oA2gIR0CRTAaJhvzfdX2UKGgGR0B86IpAlfJFaAdN6ANoCEdAkVZMiW3Sa3V9lChoBkdAgCKZvkzXSWgHTegDaAhHQJFgwlXzUZx1fZQoaAZHQHmrHm3fAKxoB03oA2gIR0CRavX7cfvGdX2UKGgGR0BzJcXm/336aAdN6ANoCEdAkXU9e2NNrXV9lChoBkdAeh5VrylN12gHTegDaAhHQJF/Vw0fozN1fZQoaAZHQH0Wo82aUiZoB03oA2gIR0CRia3rUsnRdX2UKGgGR0B9uDpX6qKhaAdN6ANoCEdAkZPjXnQpnnV9lChoBkdAfOORwZOzp2gHTegDaAhHQJGeL1jAi3Z1fZQoaAZHQHZEDSThYNloB03oA2gIR0CRqGFTefqYdX2UKGgGR0B1qBNdqtYCaAdN6ANoCEdAkbKoVRDTjXV9lChoBkdAec7BLf1pTWgHTegDaAhHQJG87/zasZJ1fZQoaAZHQHBPepjtoi9oB03oA2gIR0CRx1PUaybAdX2UKGgGR0CBE0tNi6QOaAdN6ANoCEdAkdGaNIbwSnV9lChoBkdAgcZ6yjYZmGgHTegDaAhHQJHcF9hJAdJ1fZQoaAZHQHuUoHC4z8BoB03oA2gIR0CR5mZV4oqkdX2UKGgGR0B/Gdj9XLeRaAdN6ANoCEdAkfC4Er5IpnV9lChoBkdAe5jkPczqKWgHTegDaAhHQJH7Bph4MWp1fZQoaAZHQHcb84DLbHpoB03oA2gIR0CSBTjU/fO2dX2UKGgGR0B7TLncL0BfaAdN6ANoCEdAkg+FaSs8xXV9lChoBkdAgPXNKIznBGgHTegDaAhHQJIZzi0fHPx1fZQoaAZHQH2irDEWIoFoB03oA2gIR0CSJBGOMl1KdX2UKGgGR8B9dNFQVKwqaAdN6ANoCEdAki4mJemelXV9lChoBkdAc2q2FnIyTWgHTegDaAhHQJI4dTFVDKJ1fZQoaAZHQFArATqSowVoB03oA2gIR0CSQpfZ26kJdX2UKGgGR0Bw9PJ0W/JvaAdN6ANoCEdAkkzf5pJwsHV9lChoBkdAbxz2wFC9iGgHTegDaAhHQJJXP3Ehq0t1fZQoaAZHQHhyqX0Gu9xoB03oA2gIR0CSYZfgrH2idX2UKGgGR0BsXfSBshxHaAdN6ANoCEdAkmvDYywfQ3V9lChoBkdAeHe5aePJaWgHTegDaAhHQJJ13DVH4Gl1fZQoaAZHQHtUtn5BTn9oB03oA2gIR0CSgBZUkv9MdX2UKGgGR0B3KxQk5ZKWaAdN6ANoCEdAkopC6H0sfHV9lChoBkdAanplTWGyomgHTegDaAhHQJKUqDvmYBx1fZQoaAZHQG6EE/r0J4VoB03oA2gIR0CSnulHBk7PdX2UKGgGR0B7YT/io86naAdN6ANoCEdAkqkvwqiGnHV9lChoBkdAfwqkhRqGlGgHTegDaAhHQJKzULa24NJ1fZQoaAZHQIIwOdK/VRVoB03oA2gIR0CSvaBZpztDdX2UKGgGR0B1sViBoVVQaAdN6ANoCEdAksfAtFrmAHV9lChoBkdAgbNXJPqLTGgHTegDaAhHQJLSPJT2nKp1fZQoaAZHQHgDuqm0mdBoB03oA2gIR0CS3N7o0Q9SdX2UKGgGR8BwgGsU7CBPaAdN6ANoCEdAkuhDCUHIIXV9lChoBkfAflo8MNMGo2gHTegDaAhHQJLyjsw+MZR1fZQoaAZHwIe6uMOwxFloB03oA2gIR0CS/OcB2fTTdX2UKGgGR8CGTIBV+7UYaAdN6ANoCEdAkwdK7EpAlnV9lChoBkfAfQjoDPnjhmgHTegDaAhHQJMRpsi0OVh1fZQoaAZHwFS4VWjoIOZoB03oA2gIR0CTHByon8badX2UKGgGR0Bn5sry1/lRaAdN6ANoCEdAkyaYb4rSVnV9lChoBkfAUwpFpfx+a2gHTegDaAhHQJMxKshgVoJ1fZQoaAZHwG1JEY4yXUpoB03oA2gIR0CTPEEGJN0vdX2UKGgGR8BkYxvWH1vmaAdN6ANoCEdAk0aMlPacqnV9lChoBkfAfTddJJ5E+mgHTegDaAhHQJNQ0G/vfCR1fZQoaAZHwJN1HfO2RaJoB03oA2gIR0CTWsyZrpJPdX2UKGgGR8CMTG3Q2MsIaAdN6ANoCEdAk2TUGA08/3V9lChoBkfAjzMowM6RyWgHTegDaAhHQJNuxXXAdn11fZQoaAZHwIN6rxkNF0BoB03oA2gIR0CTeMfCAMDwdX2UKGgGR8CJIqji4rjHaAdN6ANoCEdAk4LiXMQmNXVlLg=="
89
  },
90
  "ep_success_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
93
  },
94
+ "_n_updates": 60267,
95
  "n_steps": 8,
96
  "gamma": 0.99,
97
  "gae_lambda": 0.9,
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f27cf43879fbfa16ba647a53d85d9a0e17508a42cebf6551fcfdf51693efed4
3
- size 54142
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c68ebadb10fa43cb3cdc588f6a6297a6cb1acb9e163a99d85c78f0cd36fdb223
3
+ size 54078
a2c-HalfCheetahBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:045e3b4a5209a8d309d9921f34f134c82f46b9a1b07dc54f2ac5e7a73d6c932a
3
  size 54718
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8c5128878f351ca7edbb76b367666a2fbc5948384fdd356f7f3c7b00da84703
3
  size 54718
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f221d86f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f221d86f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f221d86f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f221d86f830>", "_build": "<function ActorCriticPolicy._build at 0x7f221d86f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f221d86f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f221d86f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f221d86fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f221d86fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f221d86fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f221d86fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f221d8b0d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659810005.689662, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASV8gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNoAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC3A5G+AAAAAEEoj70AAAAA9G5svgAAAACa028+AAAAALNmKr0AAAAAYeSjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIwMmfAbhm6MAWyUTegDjAF0lEdAs3rm5I6KcnV9lChoBkfAkIWg+Y+jd2gHTegDaAhHQLN9daBZpzt1fZQoaAZHwJAaXrpqynloB03oA2gIR0CzgAEsvqTsdX2UKGgGR8CFwnCa7VawaAdN6ANoCEdAs4KRq59Vm3V9lChoBkfAjHxNZvDP4WgHTegDaAhHQLOFLe+Eh7p1fZQoaAZHwJTkKTr3TNNoB03oA2gIR0Czh89LlFMJdX2UKGgGR8CUeGSPU8V6aAdN6ANoCEdAs4pzHggow3V9lChoBkfAktQZgogFHWgHTegDaAhHQLONDeCkGiZ1fZQoaAZHwIiVMiB5HExoB03oA2gIR0Czj6IClrM1dX2UKGgGR8CB2MV4X40uaAdN6ANoCEdAs5I2BPKuCHV9lChoBkfAiOe3DvVmSWgHTegDaAhHQLOUxOU+s5p1fZQoaAZHwHh8Bhc7hehoB03oA2gIR0Czl1SGWUr1dX2UKGgGR8Brf/fVI7NjaAdN6ANoCEdAs5nySNfgJnV9lChoBkfAhUR2ETQE6mgHTegDaAhHQLOch8yvcJt1fZQoaAZHwHUFrcfvF3poB03oA2gIR0CznxqUzKs/dX2UKGgGR8CQnTpYcNpeaAdN6ANoCEdAs6Gqj3225XV9lChoBkfAgaTVoYekpWgHTegDaAhHQLOkOV/c32p1fZQoaAZHwIilsPvrnkloB03oA2gIR0CzpskSuhbodX2UKGgGR8CPysPLgXMyaAdN6ANoCEdAs6lTHktEonV9lChoBkfAjduQKa5PM2gHTegDaAhHQLOr5XiR4hV1fZQoaAZHwIcEatxMnJFoB03oA2gIR0Czrn1H4GlidX2UKGgGR8CNyciyprDZaAdN6ANoCEdAs7EPEm6XjXV9lChoBkfAhBt7PQfIS2gHTegDaAhHQLOznLowEhd1fZQoaAZHwIWDiRB/qgRoB03oA2gIR0Czti4nOSntdX2UKGgGR8B2/xrP+n63aAdN6ANoCEdAs7jRQhwEQ3V9lChoBkfAezErwOOKfmgHTegDaAhHQLO7aAMUh3d1fZQoaAZHwISw9pudf9hoB03oA2gIR0Czvfey3Td+dX2UKGgGR8B0as0DU3GXaAdN6ANoCEdAs8CAh5gPVnV9lChoBkfAeEt5e7cwg2gHTegDaAhHQLPDHBBRhtt1fZQoaAZHwIorriOvMbFoB03oA2gIR0Czxae5jH4odX2UKGgGR8CLNSXrMTviaAdN6ANoCEdAs8g3ZpSJj3V9lChoBkfAfxWcs189fWgHTegDaAhHQLPKxOBDohZ1fZQoaAZHwIRt74cm0E5oB03oA2gIR0CzzVhew9q2dX2UKGgGR8CDTb/rjYI0aAdN6ANoCEdAs8/lLcsUZnV9lChoBkfAiG1WyLQ5WGgHTegDaAhHQLPSaxdpqRF1fZQoaAZHwI9UVBOYYzloB03oA2gIR0Cz1PexGDtgdX2UKGgGR8CLOFV2A5JcaAdN6ANoCEdAs9eM5CF9KHV9lChoBkfAhANmtQsPKGgHTegDaAhHQLPaGa9K28Z1fZQoaAZHwIutdxp+MIhoB03oA2gIR0Cz3KmVVxS6dX2UKGgGR8CKbFbMX7+DaAdN6ANoCEdAs986Gj9GZ3V9lChoBkfAjC2Y5T6zmmgHTegDaAhHQLPhyVZLZjB1fZQoaAZHwIW0779AHFBoB03oA2gIR0Cz5FBxtHhCdX2UKGgGR8CFxjUDuBtlaAdN6ANoCEdAs+bcY2sJY3V9lChoBkfAhtp3LeQ+2WgHTegDaAhHQLPpaX9BKL91fZQoaAZHwIow3QMQVbloB03oA2gIR0Cz6/aUA1ejdX2UKGgGR8CDI9YkmhM8aAdN6ANoCEdAs+53l4keIXV9lChoBkfAjQFWGATZhGgHTegDaAhHQLPxAR3NcGF1fZQoaAZHwIyAbp3X7LtoB03oA2gIR0Cz84jRplBhdX2UKGgGR8CL/6Ut7KJVaAdN6ANoCEdAs/Yi0x/NJXV9lChoBkfAi9AiqABkqmgHTegDaAhHQLP4rNNrTH91fZQoaAZHwIxuUXWOIZZoB03oA2gIR0Cz+zRQizLPdX2UKGgGR8CJAMKv3ai9aAdN6ANoCEdAs/3CX7cfvHV9lChoBkfAiOPpYcNpd2gHTegDaAhHQLQAVDQJHAh1fZQoaAZHwIQfMMEzO5doB03oA2gIR0C0AuoOYplSdX2UKGgGR8CFlvY/3WWhaAdN6ANoCEdAtAWBhgE2YXV9lChoBkfAgXrCLVFx42gHTegDaAhHQLQIG2nbZe11fZQoaAZHwIYdUZJkGzNoB03oA2gIR0C0Cq18b70ndX2UKGgGR8CEwc2zfJmvaAdN6ANoCEdAtA01oexOcnV9lChoBkfAjctj1PFefWgHTegDaAhHQLQPv9l2/zt1fZQoaAZHwIOxGyiVSoBoB03oA2gIR0C0Ek2c4HX3dX2UKGgGR8CK0z3g1m8NaAdN6ANoCEdAtBTgcuJ1q3V9lChoBkfAhEXJQLux8mgHTegDaAhHQLQXcoXbdrR1fZQoaAZHwInG7jYI0IloB03oA2gIR0C0GfdkBjnWdX2UKGgGR8CG0F0W/JvHaAdN6ANoCEdAtBx+0AtFrnV9lChoBkfAhqke8wpOOGgHTegDaAhHQLQfDtAs0551fZQoaAZHwIhEORs/IKdoB03oA2gIR0C0IZy6xxDLdX2UKGgGR8CEOf0th/iHaAdN6ANoCEdAtCQpaHKwIXV9lChoBkfAh1lK4hEBsGgHTegDaAhHQLQmtBguyu91fZQoaAZHwJI1S7xusLhoB03oA2gIR0C0KT6eCkGidX2UKGgGR8CMsf05EMLGaAdN6ANoCEdAtCvGBYmsvXV9lChoBkfAhyzzgVGkOGgHTegDaAhHQLQuRC+UQkJ1fZQoaAZHwIYhlD2JzkpoB03oA2gIR0C0MMu4oZyddX2UKGgGR8CXXoVWS2YwaAdN6ANoCEdAtDN062fCh3V9lChoBkfAl/k7VawD/2gHTegDaAhHQLQ2JAR02cd1fZQoaAZHwIUPohQm/nJoB03oA2gIR0C0OK8NMGordX2UKGgGR8CMiZl7MPjGaAdN6ANoCEdAtDtGi22G7HV9lChoBkfAiMoEd/8VHmgHTegDaAhHQLQ91rDIikh1fZQoaAZHwIRschgVoHtoB03oA2gIR0C0QFuO801qdX2UKGgGR8CPJRLBbfP5aAdN6ANoCEdAtELovDgqE3V9lChoBkfAjbvgXVLBbmgHTegDaAhHQLRFcI8QqZt1fZQoaAZHwIsdv4qPOptoB03oA2gIR0C0R/5c1O0tdX2UKGgGR8CHMJk0aZQYaAdN6ANoCEdAtEqGd4FA3XV9lChoBkfAihHN21UlzGgHTegDaAhHQLRNDYLLIPt1fZQoaAZHwIK5UcGTs6doB03oA2gIR0C0T5KrilzmdX2UKGgGR8CFFE77Kq4paAdN6ANoCEdAtFIzeZXuE3V9lChoBkfAjblsn7YTTWgHTegDaAhHQLRUx6D5CWx1fZQoaAZHwIwnYFV1fVtoB03oA2gIR0C0V1bCaZx8dX2UKGgGR8CFkgiRGMGYaAdN6ANoCEdAtFnkEt/WlXV9lChoBkfAgpS/BFd9lWgHTegDaAhHQLRceRx95Qh1fZQoaAZHwIoNNucc2itoB03oA2gIR0C0XwnRCx/vdX2UKGgGR8CJrOXAuZkTaAdN6ANoCEdAtGGY2606YHV9lChoBkfAir9IsyzolmgHTegDaAhHQLRkGkaMrEt1fZQoaAZHwJCeaPFNtZVoB03oA2gIR0C0ZqqS1Vo6dX2UKGgGR8CGPsCSzPa+aAdN6ANoCEdAtGk2TdLxqnV9lChoBkfAibHRlg+hXmgHTegDaAhHQLRrwqsEJSl1fZQoaAZHwIJWcd1dPcloB03oA2gIR0C0bkfDcdo4dX2UKGgGR8CD+/3JxNqQaAdN6ANoCEdAtHDcCaJAMXV9lChoBkfAgGekQGwA2mgHTegDaAhHQLRzbXf642F1fZQoaAZHwH4jwumJm/ZoB03oA2gIR0C0dfq/yoXLdX2UKGgGR8CBoT1QIldDaAdN6ANoCEdAtHiIdQwbl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f221d86f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f221d86f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f221d86f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f221d86f830>", "_build": "<function ActorCriticPolicy._build at 0x7f221d86f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f221d86f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f221d86f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f221d86fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f221d86fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f221d86fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f221d86fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f221d8b0d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 482142, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659817355.5288627, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASV8gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNop0lJvgAAAAAAAIA/AAqAvgAAAADFg7M+AAAAgARU6D5apj++IFTovg/BhL880jQ+HnCaP89x+76gAf69CqoOv7cigL+Iyuo7Rx+AP1Cax7sAAAAAAACAPwAAgD8AAIA/AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.7589319999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH85VwPy0+MAWyUTegDjAF0lEdAjxFdugpSaXV9lChoBkdAZ5wdRR/EwWgHTegDaAhHQI8lt2HLzPN1fZQoaAZHQGxLDoQnQY1oB03oA2gIR0CPOdaCcwxndX2UKGgGR0B2bG8mKIi1aAdN6ANoCEdAj03u2JBPbnV9lChoBkdAbMISSNfgJmgHTegDaAhHQI9iPLxI8Qt1fZQoaAZHQHADOIZZSvVoB03oA2gIR0CPdoJLM9r5dX2UKGgGR0BjtgO2AoXsaAdN6ANoCEdAj4rrftQbdnV9lChoBkdAQf/6hxo7FWgHTegDaAhHQI+fIicG1QZ1fZQoaAZHQHgdcqvvBrNoB03oA2gIR0CPs3XVbzK+dX2UKGgGR0B11a0D2alUaAdN6ANoCEdAj8fTn7pFC3V9lChoBkdAdOuwI+nqFGgHTegDaAhHQI/ceT7l7t11fZQoaAZHQGwaPL5hz/9oB03oA2gIR0CP8Oqo60Y1dX2UKGgGR0BlQBML4N7TaAdN6ANoCEdAkAK6BVdX1nV9lChoBkdAbHgk1uR9w2gHTegDaAhHQJAM4ogFHJ91fZQoaAZHQHbS0XDWK/FoB03oA2gIR0CQFzyVv/BFdX2UKGgGR0BrU4jD8+A3aAdN6ANoCEdAkCFwuAZsK3V9lChoBkdAcuL5cC5mRWgHTegDaAhHQJArvaakRBh1fZQoaAZHQHQ98+V1Oj9oB03oA2gIR0CQNgAGSpzcdX2UKGgGR0B0jSlbeMyaaAdN6ANoCEdAkEBuwTufEnV9lChoBkdAbCwwudwvQGgHTegDaAhHQJBKk8p1A7h1fZQoaAZHQHrNgXQ+lj5oB03oA2gIR0CQVNJzT4L1dX2UKGgGR0B1jEsg+yJLaAdN6ANoCEdAkF8+tW+49XV9lChoBkdAdw4tQbdadWgHTegDaAhHQJBpkh1Tzd11fZQoaAZHQGcqAQpWmxdoB03oA2gIR0CQc9bKzRhMdX2UKGgGR0B3L2KhtcfOaAdN6ANoCEdAkH4Vj3Ehq3V9lChoBkdAdOVhcJMQE2gHTegDaAhHQJCIaH+Idlx1fZQoaAZHQHo0ovrWy1NoB03oA2gIR0CQksW6bvw3dX2UKGgGR0B9ODtVrAP/aAdN6ANoCEdAkJ0VPN3W4HV9lChoBkdAfu4lQ/HHWGgHTegDaAhHQJCnqWLP2PF1fZQoaAZHQHz9++VTrE9oB03oA2gIR0CQsdhsZYPodX2UKGgGR0B6hpYZEUj+aAdN6ANoCEdAkLxSHuZ1FHV9lChoBkdAgVzNU4rBkGgHTegDaAhHQJDGkNmUW2x1fZQoaAZHQIEStH6MzdloB03oA2gIR0CQ0M5pJwsHdX2UKGgGR0CBtJ2saKk3aAdN6ANoCEdAkNsiM1jy4HV9lChoBkdAgQYz5XU6P2gHTegDaAhHQJDlioLofSx1fZQoaAZHQIKEX5LytmtoB03oA2gIR0CQ776ClJpWdX2UKGgGR0CDmT39rGipaAdN6ANoCEdAkPnwmu1WsHV9lChoBkdAe7nepGWldmgHTegDaAhHQJEEFqO938p1fZQoaAZHQGwcf1g6U7loB03oA2gIR0CRDnlOoHcDdX2UKGgGR0A/T94NZvDQaAdN6ANoCEdAkRjVfiPyTnV9lChoBkdAfWWQEZBLPGgHTegDaAhHQJEjGOcUdrB1fZQoaAZHQH4tzJp35etoB03oA2gIR0CRLVlMRHwxdX2UKGgGR0B1sXg3tKI0aAdN6ANoCEdAkTe7jtG/e3V9lChoBkdAW6s9hZyMk2gHTegDaAhHQJFBzA44p+d1fZQoaAZHQHCKcF2V3UxoB03oA2gIR0CRTAaJhvzfdX2UKGgGR0B86IpAlfJFaAdN6ANoCEdAkVZMiW3Sa3V9lChoBkdAgCKZvkzXSWgHTegDaAhHQJFgwlXzUZx1fZQoaAZHQHmrHm3fAKxoB03oA2gIR0CRavX7cfvGdX2UKGgGR0BzJcXm/336aAdN6ANoCEdAkXU9e2NNrXV9lChoBkdAeh5VrylN12gHTegDaAhHQJF/Vw0fozN1fZQoaAZHQH0Wo82aUiZoB03oA2gIR0CRia3rUsnRdX2UKGgGR0B9uDpX6qKhaAdN6ANoCEdAkZPjXnQpnnV9lChoBkdAfOORwZOzp2gHTegDaAhHQJGeL1jAi3Z1fZQoaAZHQHZEDSThYNloB03oA2gIR0CRqGFTefqYdX2UKGgGR0B1qBNdqtYCaAdN6ANoCEdAkbKoVRDTjXV9lChoBkdAec7BLf1pTWgHTegDaAhHQJG87/zasZJ1fZQoaAZHQHBPepjtoi9oB03oA2gIR0CRx1PUaybAdX2UKGgGR0CBE0tNi6QOaAdN6ANoCEdAkdGaNIbwSnV9lChoBkdAgcZ6yjYZmGgHTegDaAhHQJHcF9hJAdJ1fZQoaAZHQHuUoHC4z8BoB03oA2gIR0CR5mZV4oqkdX2UKGgGR0B/Gdj9XLeRaAdN6ANoCEdAkfC4Er5IpnV9lChoBkdAe5jkPczqKWgHTegDaAhHQJH7Bph4MWp1fZQoaAZHQHcb84DLbHpoB03oA2gIR0CSBTjU/fO2dX2UKGgGR0B7TLncL0BfaAdN6ANoCEdAkg+FaSs8xXV9lChoBkdAgPXNKIznBGgHTegDaAhHQJIZzi0fHPx1fZQoaAZHQH2irDEWIoFoB03oA2gIR0CSJBGOMl1KdX2UKGgGR8B9dNFQVKwqaAdN6ANoCEdAki4mJemelXV9lChoBkdAc2q2FnIyTWgHTegDaAhHQJI4dTFVDKJ1fZQoaAZHQFArATqSowVoB03oA2gIR0CSQpfZ26kJdX2UKGgGR0Bw9PJ0W/JvaAdN6ANoCEdAkkzf5pJwsHV9lChoBkdAbxz2wFC9iGgHTegDaAhHQJJXP3Ehq0t1fZQoaAZHQHhyqX0Gu9xoB03oA2gIR0CSYZfgrH2idX2UKGgGR0BsXfSBshxHaAdN6ANoCEdAkmvDYywfQ3V9lChoBkdAeHe5aePJaWgHTegDaAhHQJJ13DVH4Gl1fZQoaAZHQHtUtn5BTn9oB03oA2gIR0CSgBZUkv9MdX2UKGgGR0B3KxQk5ZKWaAdN6ANoCEdAkopC6H0sfHV9lChoBkdAanplTWGyomgHTegDaAhHQJKUqDvmYBx1fZQoaAZHQG6EE/r0J4VoB03oA2gIR0CSnulHBk7PdX2UKGgGR0B7YT/io86naAdN6ANoCEdAkqkvwqiGnHV9lChoBkdAfwqkhRqGlGgHTegDaAhHQJKzULa24NJ1fZQoaAZHQIIwOdK/VRVoB03oA2gIR0CSvaBZpztDdX2UKGgGR0B1sViBoVVQaAdN6ANoCEdAksfAtFrmAHV9lChoBkdAgbNXJPqLTGgHTegDaAhHQJLSPJT2nKp1fZQoaAZHQHgDuqm0mdBoB03oA2gIR0CS3N7o0Q9SdX2UKGgGR8BwgGsU7CBPaAdN6ANoCEdAkuhDCUHIIXV9lChoBkfAflo8MNMGo2gHTegDaAhHQJLyjsw+MZR1fZQoaAZHwIe6uMOwxFloB03oA2gIR0CS/OcB2fTTdX2UKGgGR8CGTIBV+7UYaAdN6ANoCEdAkwdK7EpAlnV9lChoBkfAfQjoDPnjhmgHTegDaAhHQJMRpsi0OVh1fZQoaAZHwFS4VWjoIOZoB03oA2gIR0CTHByon8badX2UKGgGR0Bn5sry1/lRaAdN6ANoCEdAkyaYb4rSVnV9lChoBkfAUwpFpfx+a2gHTegDaAhHQJMxKshgVoJ1fZQoaAZHwG1JEY4yXUpoB03oA2gIR0CTPEEGJN0vdX2UKGgGR8BkYxvWH1vmaAdN6ANoCEdAk0aMlPacqnV9lChoBkfAfTddJJ5E+mgHTegDaAhHQJNQ0G/vfCR1fZQoaAZHwJN1HfO2RaJoB03oA2gIR0CTWsyZrpJPdX2UKGgGR8CMTG3Q2MsIaAdN6ANoCEdAk2TUGA08/3V9lChoBkfAjzMowM6RyWgHTegDaAhHQJNuxXXAdn11fZQoaAZHwIN6rxkNF0BoB03oA2gIR0CTeMfCAMDwdX2UKGgGR8CJIqji4rjHaAdN6ANoCEdAk4LiXMQmNXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 60267, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -755.9607626668833, "std_reward": 225.20464390631574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-06T20:10:55.870962"}
 
1
+ {"mean_reward": -891.3658191909635, "std_reward": 122.8841069109629, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-06T20:44:12.585040"}