Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-HopperBulletEnv-v0.zip +3 -0
- a2c-HopperBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-HopperBulletEnv-v0/data +102 -0
- a2c-HopperBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-HopperBulletEnv-v0/policy.pth +3 -0
- a2c-HopperBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-HopperBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HopperBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 150.69 +/- 13.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HopperBulletEnv-v0
|
20 |
+
type: HopperBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **HopperBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **HopperBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-HopperBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fac9fc68ffb47674932b979f5e02e20047f3c789cb52e97b1e742c835bfe2c81
|
3 |
+
size 108631
|
a2c-HopperBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-HopperBulletEnv-v0/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f221d86f680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f221d86f710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f221d86f7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f221d86f830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f221d86f8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f221d86f950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f221d86f9e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f221d86fa70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f221d86fb00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f221d86fb90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f221d86fc20>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f221d8b0d50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVCQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsPhZRoColDPAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLD4WUaAqJQzwAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSw+FlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMPAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsPhZRoKolDDwAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
15
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
3
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True]",
|
57 |
+
"bounded_above": "[ True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 1,
|
61 |
+
"num_timesteps": 112615,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1659819426.669031,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVxgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLD4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUM8tqGrvQAAAAAAAIA/xdJePgAAAADkAxa9AAAAAKVCA74C0lI/iUvyPdoIKT87Chm+2hYJP67/dT0AAAAAlHSUYi4="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": null,
|
82 |
+
"_episode_num": 0,
|
83 |
+
"use_sde": true,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": 0.943696,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gASV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFA7EsJ6Y3OMAWyUS0CMAXSUR0BuM+7L+xW1dX2UKGgGR0BBsT2vjfelaAdLJ2gIR0BuNrYVZcLSdX2UKGgGR0BFgSF49ovjaAdLJWgIR0BuOYA0bcXWdX2UKGgGR0AXe2Dxsl9jaAdLIWgIR0BuO+qm0mdBdX2UKGgGR0BADCJoCdSVaAdLI2gIR0BuPl/YraufdX2UKGgGR0AyW2AG0NSZaAdLF2gIR0BuQA482aUidX2UKGgGR0AwkdfLLZBcaAdLH2gIR0BuQk6YE4ecdX2UKGgGR0A0MpQ1rIo3aAdLFWgIR0BuRCRdQfp2dX2UKGgGR0BAilhoduHfaAdLIWgIR0BuRnkq+ajOdX2UKGgGR0A/FhB7eEZjaAdLI2gIR0BuSO/WUbDNdX2UKGgGR0BYdXhCMPz4aAdLOWgIR0BuTRj+aScLdX2UKGgGR0Aj+mShakhzaAdLIGgIR0BuT49/z8P4dX2UKGgGR0AE6t/4IrvtaAdLH2gIR0BuUc32mHgxdX2UKGgGR0BWLZw0fozOaAdLOWgIR0BuVgmE4//vdX2UKGgGR0BBDhYV6/qPaAdLH2gIR0BuWEJF9a2XdX2UKGgGR0BWyhJul41QaAdLOmgIR0BuXHgJkXk6dX2UKGgGR0BFGIUSIxgzaAdLJGgIR0BuXyf16E8JdX2UKGgGR0BBaf95yEL6aAdLH2gIR0BuYW3fAKv3dX2UKGgGR0BAtRGMGX5WaAdLImgIR0BuY9LDhtLtdX2UKGgGR0BEQlUZNwiraAdLMWgIR0BuZ07GNrCWdX2UKGgGR0BIA70nPVuraAdLNGgIR0BuayySmqHXdX2UKGgGR0BZlLmyPdVOaAdLRGgIR0BucFKGtZFHdX2UKGgGR0BbTJj+aScLaAdLRWgIR0Bude8IzFdcdX2UKGgGR0BW8/mknCwbaAdLPGgIR0BuekTL4etCdX2UKGgGR0BZh216Vt4zaAdLQmgIR0Buf0VvddmhdX2UKGgGR0Be5Ljghr31aAdLYWgIR0Buhq0v4/NadX2UKGgGR0BgxraTOgQIaAdLV2gIR0BujVc6eXiSdX2UKGgGR0BhgbFqBVdYaAdLWmgIR0BulDBuXNTtdX2UKGgGR0Ba6Mw1zhgmaAdLTGgIR0BumdnscABDdX2UKGgGR0BggbHIZIhAaAdLV2gIR0BuoFwrDqGDdX2UKGgGR0BaP4ht+CsfaAdLQWgIR0BupQGnn+yadX2UKGgGR0BcVZmukk8iaAdLRWgIR0Buqf8AJb+tdX2UKGgGR0Be9RJEpiI+aAdLUmgIR0Bur9ozvZyudX2UKGgGR0BeJRBAv+OwaAdLRGgIR0ButMoH9m6HdX2UKGgGR0BgNXWMCLdfaAdLVmgIR0Buu07yQPqcdX2UKGgGR0BfagLy+YdAaAdLWWgIR0Buwa6DoQnQdX2UKGgGR0BfxExh2GIsaAdLZWgIR0BuySf8MuvmdX2UKGgGR0BePc+aBqbjaAdLVWgIR0BuzzbvgFX8dX2UKGgGR0Bj6+W0JF9baAdLfWgIR0Bu2FT72tdSdX2UKGgGR0BTlVrEcbR4aAdLWmgIR0Bu3wQg9vCNdX2UKGgGR0BkKr2pQ1rJaAdLhWgIR0Bu6IkC3gDSdX2UKGgGR0BRHBHkLhJiaAdLUmgIR0Bu7lu3trsTdX2UKGgGR0A22U6PsAvMaAdLJ2gIR0Bu8TpTuOS4dX2UKGgGR0BBP3B55Z8saAdLP2gIR0Bu9cbtJFspdX2UKGgGR0ArhclgMMJAaAdLLmgIR0Bu+Tg0j1PFdX2UKGgGR0BFdye7L+xXaAdLOWgIR0Bu/VSde6ZqdX2UKGgGR0Apt0jkdV/+aAdLPWgIR0BvAbjtG/etdX2UKGgGR0A1p7cO9WZJaAdLOWgIR0BvBbwz+FURdX2UKGgGR0Bhal0zTF2naAdLWWgIR0BvDE0elsP8dX2UKGgGR0Ba8UaqCHymaAdLVGgIR0BvEkdV/+bWdX2UKGgGR0BTtk2gnMMaaAdLPWgIR0BvFrWAf+0gdX2UKGgGR0BP5MU7CBPLaAdLTWgIR0BvHGpsGgSOdX2UKGgGR0BiYaHEdeY2aAdLa2gIR0BvJAJ9iMHbdX2UKGgGR0BkAxAlfJFLaAdLcmgIR0BvLEYKpkwwdX2UKGgGR0Bi8BLCemNzaAdLe2gIR0BvNZwqAjIJdX2UKGgGR0BkMwgkka/AaAdLgWgIR0BvP1p/PPcBdX2UKGgGR0Bgaj7Kq4pdaAdLc2gIR0BvR6aXrt3OdX2UKGgGR0BiT40XP7emaAdLZ2gIR0BvTxInSfDldX2UKGgGR0BlHk32mHgxaAdLdGgIR0BvV56Uqx1QdX2UKGgGR0Bb27i6xxDLaAdLUmgIR0BvXdTcZccEdX2UKGgGR0BhN8KiO/+LaAdLXWgIR0BvZI7xNIsidX2UKGgGR0BlR8Bp5/smaAdLjmgIR0Bvbw+W4Vh1dX2UKGgGR0BsWM+zMRpUaAdLxmgIR0Bvfd1fVqetdX2UKGgGR0BodKvA44p+aAdLomgIR0BviXvQWvbHdX2UKGgGR0CLAdLi++M7aAdN6ANoCEdAb9MhbnoxH3V9lChoBkdAdEzabnX/YWgHTegDaAhHQHAOUTcqOLl1fZQoaAZHQHnUJGe+VTtoB03pAWgIR0BwIF8BuGbkdX2UKGgGR0AkDVaOgg5jaAdLVWgIR0BwI2NipeeGdX2UKGgGR0BIE6gM+eOGaAdLfGgIR0BwJ+amXPZ7dX2UKGgGR0B3hNUaQ3glaAdNHAJoCEdAcDu35eqrBHV9lChoBkdAZHLYxL0z02gHS8VoCEdAcELpxWDHwXV9lChoBkdAaEEPiDM/yGgHS71oCEdAcEnVNpM6BHV9lChoBkdAWgDcUM5OrWgHS3loCEdAcE4z8P4EfXV9lChoBkdAY4Ojt5UtI2gHS8ZoCEdAcFWKcNH6M3V9lChoBkdAX1ZBOYYzi2gHS6hoCEdAcFt6gdwNsnV9lChoBkdAWC/D4xk/bGgHS3loCEdAcF/ub7TDwnV9lChoBkdAS9izqrzXjGgHS2hoCEdAcGOjJuEVWXV9lChoBkdAZKrhF3IMjWgHS5BoCEdAcGjh9LHuJHV9lChoBkdAZn7qQA+6iGgHS59oCEdAcG6b/wRXfnV9lChoBkdAZhDqM3qA0GgHS5JoCEdAcHPwvg3tKXV9lChoBkdAY8x5X2dupGgHS3JoCEdAcHgq7yxzJnV9lChoBkdAaV725hBqsWgHS7RoCEdAcH6lpoK2KHV9lChoBkdAfRgvMbFS9GgHTfEBaAhHQHCRGhEjPfN1fZQoaAZHQGv5N9ph4MZoB0vZaAhHQHCYybH6uW91fZQoaAZHQGYPqFZgXuVoB0uZaAhHQHCfYwZflZJ1fZQoaAZHQGt+hgNPP9loB0u1aAhHQHCmyTdLxqh1fZQoaAZHQGgL9cjZ+QVoB0ueaAhHQHCso6nzg/F1fZQoaAZHQHUsOr2g399oB01IAWgIR0BwuIK/mDDkdX2UKGgGR0B0SPD/EOy3aAdNLgFoCEdAcMNupjtojHV9lChoBkdAZ4DtCzC1qmgHS6NoCEdAcMlpwjt5U3V9lChoBkdAaNefPomoi2gHS6toCEdAcM9xnWattHV9lChoBkdAYdMQ9zOopGgHS4hoCEdAcNRNc4YJmnV9lChoBkdAcOKywOe8PGgHS/xoCEdAcN15O8Cgb3V9lChoBkdAdAFqrzXjEWgHTUsBaAhHQHDpZ5qubI91fZQoaAZHQHmdDVhCtzVoB011AWgIR0Bw9wRtgrpadX2UKGgGR0BrJTZezD4yaAdLsmgIR0Bw/ZKcurZKdX2UKGgGR0Bm40Emplz2aAdLkWgIR0BxAtHH3lCDdX2UKGgGR0BjLflOoHcDaAdLYGgIR0BxBkX40uUVdX2UKGgGR0BjRuDg62fDaAdLXmgIR0BxCcCdSVGDdX2UKGgGR0Bh03pY9xIbaAdLWGgIR0BxDOdDpkf+dWUu"
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 14076,
|
95 |
+
"n_steps": 8,
|
96 |
+
"gamma": 0.99,
|
97 |
+
"gae_lambda": 0.9,
|
98 |
+
"ent_coef": 0.0,
|
99 |
+
"vf_coef": 0.4,
|
100 |
+
"max_grad_norm": 0.5,
|
101 |
+
"normalize_advantage": false
|
102 |
+
}
|
a2c-HopperBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:329ca32719a31af38e9b33e09705ead74b1532a8ea64dd9116c54ea72b57dbe1
|
3 |
+
size 46910
|
a2c-HopperBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5278e55a3faff11443194e5f7aec81de2004a09ebd25111740691411ef01737a
|
3 |
+
size 47550
|
a2c-HopperBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-HopperBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f221d86f680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f221d86f710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f221d86f7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f221d86f830>", "_build": "<function ActorCriticPolicy._build at 0x7f221d86f8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f221d86f950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f221d86f9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f221d86fa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f221d86fb00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f221d86fb90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f221d86fc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f221d8b0d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVCQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsPhZRoColDPAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLD4WUaAqJQzwAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSw+FlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMPAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsPhZRoKolDDwAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [15], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 112615, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659819426.669031, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVxgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLD4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUM8tqGrvQAAAAAAAIA/xdJePgAAAADkAxa9AAAAAKVCA74C0lI/iUvyPdoIKT87Chm+2hYJP67/dT0AAAAAlHSUYi4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.943696, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFA7EsJ6Y3OMAWyUS0CMAXSUR0BuM+7L+xW1dX2UKGgGR0BBsT2vjfelaAdLJ2gIR0BuNrYVZcLSdX2UKGgGR0BFgSF49ovjaAdLJWgIR0BuOYA0bcXWdX2UKGgGR0AXe2Dxsl9jaAdLIWgIR0BuO+qm0mdBdX2UKGgGR0BADCJoCdSVaAdLI2gIR0BuPl/YraufdX2UKGgGR0AyW2AG0NSZaAdLF2gIR0BuQA482aUidX2UKGgGR0AwkdfLLZBcaAdLH2gIR0BuQk6YE4ecdX2UKGgGR0A0MpQ1rIo3aAdLFWgIR0BuRCRdQfp2dX2UKGgGR0BAilhoduHfaAdLIWgIR0BuRnkq+ajOdX2UKGgGR0A/FhB7eEZjaAdLI2gIR0BuSO/WUbDNdX2UKGgGR0BYdXhCMPz4aAdLOWgIR0BuTRj+aScLdX2UKGgGR0Aj+mShakhzaAdLIGgIR0BuT49/z8P4dX2UKGgGR0AE6t/4IrvtaAdLH2gIR0BuUc32mHgxdX2UKGgGR0BWLZw0fozOaAdLOWgIR0BuVgmE4//vdX2UKGgGR0BBDhYV6/qPaAdLH2gIR0BuWEJF9a2XdX2UKGgGR0BWyhJul41QaAdLOmgIR0BuXHgJkXk6dX2UKGgGR0BFGIUSIxgzaAdLJGgIR0BuXyf16E8JdX2UKGgGR0BBaf95yEL6aAdLH2gIR0BuYW3fAKv3dX2UKGgGR0BAtRGMGX5WaAdLImgIR0BuY9LDhtLtdX2UKGgGR0BEQlUZNwiraAdLMWgIR0BuZ07GNrCWdX2UKGgGR0BIA70nPVuraAdLNGgIR0BuayySmqHXdX2UKGgGR0BZlLmyPdVOaAdLRGgIR0BucFKGtZFHdX2UKGgGR0BbTJj+aScLaAdLRWgIR0Bude8IzFdcdX2UKGgGR0BW8/mknCwbaAdLPGgIR0BuekTL4etCdX2UKGgGR0BZh216Vt4zaAdLQmgIR0Buf0VvddmhdX2UKGgGR0Be5Ljghr31aAdLYWgIR0Buhq0v4/NadX2UKGgGR0BgxraTOgQIaAdLV2gIR0BujVc6eXiSdX2UKGgGR0BhgbFqBVdYaAdLWmgIR0BulDBuXNTtdX2UKGgGR0Ba6Mw1zhgmaAdLTGgIR0BumdnscABDdX2UKGgGR0BggbHIZIhAaAdLV2gIR0BuoFwrDqGDdX2UKGgGR0BaP4ht+CsfaAdLQWgIR0BupQGnn+yadX2UKGgGR0BcVZmukk8iaAdLRWgIR0Buqf8AJb+tdX2UKGgGR0Be9RJEpiI+aAdLUmgIR0Bur9ozvZyudX2UKGgGR0BeJRBAv+OwaAdLRGgIR0ButMoH9m6HdX2UKGgGR0BgNXWMCLdfaAdLVmgIR0Buu07yQPqcdX2UKGgGR0BfagLy+YdAaAdLWWgIR0Buwa6DoQnQdX2UKGgGR0BfxExh2GIsaAdLZWgIR0BuySf8MuvmdX2UKGgGR0BePc+aBqbjaAdLVWgIR0BuzzbvgFX8dX2UKGgGR0Bj6+W0JF9baAdLfWgIR0Bu2FT72tdSdX2UKGgGR0BTlVrEcbR4aAdLWmgIR0Bu3wQg9vCNdX2UKGgGR0BkKr2pQ1rJaAdLhWgIR0Bu6IkC3gDSdX2UKGgGR0BRHBHkLhJiaAdLUmgIR0Bu7lu3trsTdX2UKGgGR0A22U6PsAvMaAdLJ2gIR0Bu8TpTuOS4dX2UKGgGR0BBP3B55Z8saAdLP2gIR0Bu9cbtJFspdX2UKGgGR0ArhclgMMJAaAdLLmgIR0Bu+Tg0j1PFdX2UKGgGR0BFdye7L+xXaAdLOWgIR0Bu/VSde6ZqdX2UKGgGR0Apt0jkdV/+aAdLPWgIR0BvAbjtG/etdX2UKGgGR0A1p7cO9WZJaAdLOWgIR0BvBbwz+FURdX2UKGgGR0Bhal0zTF2naAdLWWgIR0BvDE0elsP8dX2UKGgGR0Ba8UaqCHymaAdLVGgIR0BvEkdV/+bWdX2UKGgGR0BTtk2gnMMaaAdLPWgIR0BvFrWAf+0gdX2UKGgGR0BP5MU7CBPLaAdLTWgIR0BvHGpsGgSOdX2UKGgGR0BiYaHEdeY2aAdLa2gIR0BvJAJ9iMHbdX2UKGgGR0BkAxAlfJFLaAdLcmgIR0BvLEYKpkwwdX2UKGgGR0Bi8BLCemNzaAdLe2gIR0BvNZwqAjIJdX2UKGgGR0BkMwgkka/AaAdLgWgIR0BvP1p/PPcBdX2UKGgGR0Bgaj7Kq4pdaAdLc2gIR0BvR6aXrt3OdX2UKGgGR0BiT40XP7emaAdLZ2gIR0BvTxInSfDldX2UKGgGR0BlHk32mHgxaAdLdGgIR0BvV56Uqx1QdX2UKGgGR0Bb27i6xxDLaAdLUmgIR0BvXdTcZccEdX2UKGgGR0BhN8KiO/+LaAdLXWgIR0BvZI7xNIsidX2UKGgGR0BlR8Bp5/smaAdLjmgIR0Bvbw+W4Vh1dX2UKGgGR0BsWM+zMRpUaAdLxmgIR0Bvfd1fVqetdX2UKGgGR0BodKvA44p+aAdLomgIR0BviXvQWvbHdX2UKGgGR0CLAdLi++M7aAdN6ANoCEdAb9MhbnoxH3V9lChoBkdAdEzabnX/YWgHTegDaAhHQHAOUTcqOLl1fZQoaAZHQHnUJGe+VTtoB03pAWgIR0BwIF8BuGbkdX2UKGgGR0AkDVaOgg5jaAdLVWgIR0BwI2NipeeGdX2UKGgGR0BIE6gM+eOGaAdLfGgIR0BwJ+amXPZ7dX2UKGgGR0B3hNUaQ3glaAdNHAJoCEdAcDu35eqrBHV9lChoBkdAZHLYxL0z02gHS8VoCEdAcELpxWDHwXV9lChoBkdAaEEPiDM/yGgHS71oCEdAcEnVNpM6BHV9lChoBkdAWgDcUM5OrWgHS3loCEdAcE4z8P4EfXV9lChoBkdAY4Ojt5UtI2gHS8ZoCEdAcFWKcNH6M3V9lChoBkdAX1ZBOYYzi2gHS6hoCEdAcFt6gdwNsnV9lChoBkdAWC/D4xk/bGgHS3loCEdAcF/ub7TDwnV9lChoBkdAS9izqrzXjGgHS2hoCEdAcGOjJuEVWXV9lChoBkdAZKrhF3IMjWgHS5BoCEdAcGjh9LHuJHV9lChoBkdAZn7qQA+6iGgHS59oCEdAcG6b/wRXfnV9lChoBkdAZhDqM3qA0GgHS5JoCEdAcHPwvg3tKXV9lChoBkdAY8x5X2dupGgHS3JoCEdAcHgq7yxzJnV9lChoBkdAaV725hBqsWgHS7RoCEdAcH6lpoK2KHV9lChoBkdAfRgvMbFS9GgHTfEBaAhHQHCRGhEjPfN1fZQoaAZHQGv5N9ph4MZoB0vZaAhHQHCYybH6uW91fZQoaAZHQGYPqFZgXuVoB0uZaAhHQHCfYwZflZJ1fZQoaAZHQGt+hgNPP9loB0u1aAhHQHCmyTdLxqh1fZQoaAZHQGgL9cjZ+QVoB0ueaAhHQHCso6nzg/F1fZQoaAZHQHUsOr2g399oB01IAWgIR0BwuIK/mDDkdX2UKGgGR0B0SPD/EOy3aAdNLgFoCEdAcMNupjtojHV9lChoBkdAZ4DtCzC1qmgHS6NoCEdAcMlpwjt5U3V9lChoBkdAaNefPomoi2gHS6toCEdAcM9xnWattHV9lChoBkdAYdMQ9zOopGgHS4hoCEdAcNRNc4YJmnV9lChoBkdAcOKywOe8PGgHS/xoCEdAcN15O8Cgb3V9lChoBkdAdAFqrzXjEWgHTUsBaAhHQHDpZ5qubI91fZQoaAZHQHmdDVhCtzVoB011AWgIR0Bw9wRtgrpadX2UKGgGR0BrJTZezD4yaAdLsmgIR0Bw/ZKcurZKdX2UKGgGR0Bm40Emplz2aAdLkWgIR0BxAtHH3lCDdX2UKGgGR0BjLflOoHcDaAdLYGgIR0BxBkX40uUVdX2UKGgGR0BjRuDg62fDaAdLXmgIR0BxCcCdSVGDdX2UKGgGR0Bh03pY9xIbaAdLWGgIR0BxDOdDpkf+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14076, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:820ba77f0fc019842886b6d34c101b2c5040da7d4df382f452c39a9045975fc1
|
3 |
+
size 1156056
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 150.68748158928938, "std_reward": 13.004283008330923, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-06T21:02:12.314792"}
|