{"policy_class": {":type:": "", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f221d8b0d50>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gASVCQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsPhZRoColDPAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLD4WUaAqJQzwAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSw+FlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMPAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsPhZRoKolDDwAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [15], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 112615, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659819426.669031, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gASVxgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLD4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUM8tqGrvQAAAAAAAIA/xdJePgAAAADkAxa9AAAAAKVCA74C0lI/iUvyPdoIKT87Chm+2hYJP67/dT0AAAAAlHSUYi4="}, "_last_episode_starts": {":type:": "", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.943696, "ep_info_buffer": {":type:": "", ":serialized:": "gASV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFA7EsJ6Y3OMAWyUS0CMAXSUR0BuM+7L+xW1dX2UKGgGR0BBsT2vjfelaAdLJ2gIR0BuNrYVZcLSdX2UKGgGR0BFgSF49ovjaAdLJWgIR0BuOYA0bcXWdX2UKGgGR0AXe2Dxsl9jaAdLIWgIR0BuO+qm0mdBdX2UKGgGR0BADCJoCdSVaAdLI2gIR0BuPl/YraufdX2UKGgGR0AyW2AG0NSZaAdLF2gIR0BuQA482aUidX2UKGgGR0AwkdfLLZBcaAdLH2gIR0BuQk6YE4ecdX2UKGgGR0A0MpQ1rIo3aAdLFWgIR0BuRCRdQfp2dX2UKGgGR0BAilhoduHfaAdLIWgIR0BuRnkq+ajOdX2UKGgGR0A/FhB7eEZjaAdLI2gIR0BuSO/WUbDNdX2UKGgGR0BYdXhCMPz4aAdLOWgIR0BuTRj+aScLdX2UKGgGR0Aj+mShakhzaAdLIGgIR0BuT49/z8P4dX2UKGgGR0AE6t/4IrvtaAdLH2gIR0BuUc32mHgxdX2UKGgGR0BWLZw0fozOaAdLOWgIR0BuVgmE4//vdX2UKGgGR0BBDhYV6/qPaAdLH2gIR0BuWEJF9a2XdX2UKGgGR0BWyhJul41QaAdLOmgIR0BuXHgJkXk6dX2UKGgGR0BFGIUSIxgzaAdLJGgIR0BuXyf16E8JdX2UKGgGR0BBaf95yEL6aAdLH2gIR0BuYW3fAKv3dX2UKGgGR0BAtRGMGX5WaAdLImgIR0BuY9LDhtLtdX2UKGgGR0BEQlUZNwiraAdLMWgIR0BuZ07GNrCWdX2UKGgGR0BIA70nPVuraAdLNGgIR0BuayySmqHXdX2UKGgGR0BZlLmyPdVOaAdLRGgIR0BucFKGtZFHdX2UKGgGR0BbTJj+aScLaAdLRWgIR0Bude8IzFdcdX2UKGgGR0BW8/mknCwbaAdLPGgIR0BuekTL4etCdX2UKGgGR0BZh216Vt4zaAdLQmgIR0Buf0VvddmhdX2UKGgGR0Be5Ljghr31aAdLYWgIR0Buhq0v4/NadX2UKGgGR0BgxraTOgQIaAdLV2gIR0BujVc6eXiSdX2UKGgGR0BhgbFqBVdYaAdLWmgIR0BulDBuXNTtdX2UKGgGR0Ba6Mw1zhgmaAdLTGgIR0BumdnscABDdX2UKGgGR0BggbHIZIhAaAdLV2gIR0BuoFwrDqGDdX2UKGgGR0BaP4ht+CsfaAdLQWgIR0BupQGnn+yadX2UKGgGR0BcVZmukk8iaAdLRWgIR0Buqf8AJb+tdX2UKGgGR0Be9RJEpiI+aAdLUmgIR0Bur9ozvZyudX2UKGgGR0BeJRBAv+OwaAdLRGgIR0ButMoH9m6HdX2UKGgGR0BgNXWMCLdfaAdLVmgIR0Buu07yQPqcdX2UKGgGR0BfagLy+YdAaAdLWWgIR0Buwa6DoQnQdX2UKGgGR0BfxExh2GIsaAdLZWgIR0BuySf8MuvmdX2UKGgGR0BePc+aBqbjaAdLVWgIR0BuzzbvgFX8dX2UKGgGR0Bj6+W0JF9baAdLfWgIR0Bu2FT72tdSdX2UKGgGR0BTlVrEcbR4aAdLWmgIR0Bu3wQg9vCNdX2UKGgGR0BkKr2pQ1rJaAdLhWgIR0Bu6IkC3gDSdX2UKGgGR0BRHBHkLhJiaAdLUmgIR0Bu7lu3trsTdX2UKGgGR0A22U6PsAvMaAdLJ2gIR0Bu8TpTuOS4dX2UKGgGR0BBP3B55Z8saAdLP2gIR0Bu9cbtJFspdX2UKGgGR0ArhclgMMJAaAdLLmgIR0Bu+Tg0j1PFdX2UKGgGR0BFdye7L+xXaAdLOWgIR0Bu/VSde6ZqdX2UKGgGR0Apt0jkdV/+aAdLPWgIR0BvAbjtG/etdX2UKGgGR0A1p7cO9WZJaAdLOWgIR0BvBbwz+FURdX2UKGgGR0Bhal0zTF2naAdLWWgIR0BvDE0elsP8dX2UKGgGR0Ba8UaqCHymaAdLVGgIR0BvEkdV/+bWdX2UKGgGR0BTtk2gnMMaaAdLPWgIR0BvFrWAf+0gdX2UKGgGR0BP5MU7CBPLaAdLTWgIR0BvHGpsGgSOdX2UKGgGR0BiYaHEdeY2aAdLa2gIR0BvJAJ9iMHbdX2UKGgGR0BkAxAlfJFLaAdLcmgIR0BvLEYKpkwwdX2UKGgGR0Bi8BLCemNzaAdLe2gIR0BvNZwqAjIJdX2UKGgGR0BkMwgkka/AaAdLgWgIR0BvP1p/PPcBdX2UKGgGR0Bgaj7Kq4pdaAdLc2gIR0BvR6aXrt3OdX2UKGgGR0BiT40XP7emaAdLZ2gIR0BvTxInSfDldX2UKGgGR0BlHk32mHgxaAdLdGgIR0BvV56Uqx1QdX2UKGgGR0Bb27i6xxDLaAdLUmgIR0BvXdTcZccEdX2UKGgGR0BhN8KiO/+LaAdLXWgIR0BvZI7xNIsidX2UKGgGR0BlR8Bp5/smaAdLjmgIR0Bvbw+W4Vh1dX2UKGgGR0BsWM+zMRpUaAdLxmgIR0Bvfd1fVqetdX2UKGgGR0BodKvA44p+aAdLomgIR0BviXvQWvbHdX2UKGgGR0CLAdLi++M7aAdN6ANoCEdAb9MhbnoxH3V9lChoBkdAdEzabnX/YWgHTegDaAhHQHAOUTcqOLl1fZQoaAZHQHnUJGe+VTtoB03pAWgIR0BwIF8BuGbkdX2UKGgGR0AkDVaOgg5jaAdLVWgIR0BwI2NipeeGdX2UKGgGR0BIE6gM+eOGaAdLfGgIR0BwJ+amXPZ7dX2UKGgGR0B3hNUaQ3glaAdNHAJoCEdAcDu35eqrBHV9lChoBkdAZHLYxL0z02gHS8VoCEdAcELpxWDHwXV9lChoBkdAaEEPiDM/yGgHS71oCEdAcEnVNpM6BHV9lChoBkdAWgDcUM5OrWgHS3loCEdAcE4z8P4EfXV9lChoBkdAY4Ojt5UtI2gHS8ZoCEdAcFWKcNH6M3V9lChoBkdAX1ZBOYYzi2gHS6hoCEdAcFt6gdwNsnV9lChoBkdAWC/D4xk/bGgHS3loCEdAcF/ub7TDwnV9lChoBkdAS9izqrzXjGgHS2hoCEdAcGOjJuEVWXV9lChoBkdAZKrhF3IMjWgHS5BoCEdAcGjh9LHuJHV9lChoBkdAZn7qQA+6iGgHS59oCEdAcG6b/wRXfnV9lChoBkdAZhDqM3qA0GgHS5JoCEdAcHPwvg3tKXV9lChoBkdAY8x5X2dupGgHS3JoCEdAcHgq7yxzJnV9lChoBkdAaV725hBqsWgHS7RoCEdAcH6lpoK2KHV9lChoBkdAfRgvMbFS9GgHTfEBaAhHQHCRGhEjPfN1fZQoaAZHQGv5N9ph4MZoB0vZaAhHQHCYybH6uW91fZQoaAZHQGYPqFZgXuVoB0uZaAhHQHCfYwZflZJ1fZQoaAZHQGt+hgNPP9loB0u1aAhHQHCmyTdLxqh1fZQoaAZHQGgL9cjZ+QVoB0ueaAhHQHCso6nzg/F1fZQoaAZHQHUsOr2g399oB01IAWgIR0BwuIK/mDDkdX2UKGgGR0B0SPD/EOy3aAdNLgFoCEdAcMNupjtojHV9lChoBkdAZ4DtCzC1qmgHS6NoCEdAcMlpwjt5U3V9lChoBkdAaNefPomoi2gHS6toCEdAcM9xnWattHV9lChoBkdAYdMQ9zOopGgHS4hoCEdAcNRNc4YJmnV9lChoBkdAcOKywOe8PGgHS/xoCEdAcN15O8Cgb3V9lChoBkdAdAFqrzXjEWgHTUsBaAhHQHDpZ5qubI91fZQoaAZHQHmdDVhCtzVoB011AWgIR0Bw9wRtgrpadX2UKGgGR0BrJTZezD4yaAdLsmgIR0Bw/ZKcurZKdX2UKGgGR0Bm40Emplz2aAdLkWgIR0BxAtHH3lCDdX2UKGgGR0BjLflOoHcDaAdLYGgIR0BxBkX40uUVdX2UKGgGR0BjRuDg62fDaAdLXmgIR0BxCcCdSVGDdX2UKGgGR0Bh03pY9xIbaAdLWGgIR0BxDOdDpkf+dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 14076, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}