metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- abdouaziiz/dyula_train
metrics:
- wer
model-index:
- name: whisper-small_dyu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: abdouaziiz/dyula_train
type: abdouaziiz/dyula_train
metrics:
- name: Wer
type: wer
value: 0.8582430119794637
whisper-small_dyu
This model is a fine-tuned version of openai/whisper-small on the abdouaziiz/dyula_train dataset. It achieves the following results on the evaluation set:
- Loss: 1.6047
- Wer: 0.8582
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 16000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.3886 | 1.4881 | 1000 | 1.6487 | 0.8525 |
0.9518 | 2.9762 | 2000 | 1.6047 | 0.8582 |
0.547 | 4.4643 | 3000 | 1.8343 | 0.8620 |
0.3519 | 5.9524 | 4000 | 1.9764 | 0.8331 |
0.2128 | 7.4405 | 5000 | 2.1710 | 0.8491 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1