abdulhade commited on
Commit
4dc25cf
1 Parent(s): df8525e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -170
README.md CHANGED
@@ -1,199 +1,100 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ # Creating a README.md file with the Hugging Face style content as per the user's request.
 
 
 
2
 
3
+ readme_content = """
4
+ # Kurdish-English Machine Translation with Hugging Face Transformers
5
 
6
+ This repository focuses on fine-tuning a Kurdish-English machine translation model using Hugging Face's `transformers` library with MarianMT. The model is trained on a custom parallel corpus with a detailed pipeline that includes data preprocessing, bidirectional training, evaluation, and inference.
7
 
8
+ ## Table of Contents
9
 
10
+ - [Introduction](#introduction)
11
+ - [Requirements](#requirements)
12
+ - [Setup](#setup)
13
+ - [Pipeline Overview](#pipeline-overview)
14
+ - [Data Preparation](#data-preparation)
15
+ - [Training SentencePiece Tokenizer](#training-sentencepiece-tokenizer)
16
+ - [Model and Tokenizer Setup](#model-and-tokenizer-setup)
17
+ - [Tokenization and Dataset Preparation](#tokenization-and-dataset-preparation)
18
+ - [Training Configuration](#training-configuration)
19
+ - [Evaluation and Metrics](#evaluation-and-metrics)
20
+ - [Inference](#inference)
21
+ - [Results](#results)
22
+ - [License](#license)
23
 
24
+ ## Introduction
25
 
26
+ This project fine-tunes a MarianMT model for Kurdish-English translation on a custom parallel corpus. Training is configured for bidirectional translation, enabling model use in both language directions.
27
 
28
+ ## Requirements
29
 
30
+ - Python 3.8+
31
+ - Hugging Face Transformers
32
+ - Datasets library
33
+ - SentencePiece
34
+ - PyTorch 1.9+
35
+ - CUDA (for GPU support)
36
 
37
+ ## Setup
 
 
 
 
 
 
38
 
39
+ 1. Clone the repository and install dependencies.
40
+ 2. Ensure GPU availability.
41
+ 3. Prepare your Kurdish-English corpus in CSV format.
42
 
43
+ ## Pipeline Overview
44
 
45
+ ### Data Preparation
 
 
46
 
47
+ 1. **Corpus**: A Kurdish-English parallel corpus in CSV format with columns `Source` (Kurdish) and `Target` (English).
48
+ 2. **Path Definition**: Specify the corpus path in the configuration.
49
 
50
+ ### Training SentencePiece Tokenizer
51
 
52
+ - **Vocabulary Size**: 32,000
53
+ - **Source Data**: The tokenizer is trained on both the primary Kurdish corpus and the English dataset to create shared subword tokens.
54
 
55
+ ### Model and Tokenizer Setup
56
 
57
+ - **Model**: `Helsinki-NLP/opus-mt-en-mul` pre-trained MarianMT model.
58
+ - **Tokenizer**: MarianMT tokenizer aligned with the model, with source and target languages set dynamically.
59
 
60
+ ### Tokenization and Dataset Preparation
61
 
62
+ - **Train-Validation Split**: 90% train, 10% validation split.
63
+ - **Maximum Sequence Length**: 128 tokens for both source and target sequences.
64
+ - **Bidirectional Tokenization**: Prepare tokenized sequences for both Kurdish-English and English-Kurdish translation.
65
 
66
+ ### Training Configuration
67
 
68
+ - **Learning Rate**: 2e-5
69
+ - **Batch Size**: 4 (per device, for both training and evaluation)
70
+ - **Weight Decay**: 0.01
71
+ - **Evaluation Strategy**: Per epoch
72
+ - **Epochs**: 3
73
+ - **Logging**: Logs saved every 100 steps, with TensorBoard logging enabled
74
+ - **Output Directory**: `./results`
75
+ - **Device**: GPU 1 explicitly set
76
 
77
+ ### Evaluation and Metrics
78
 
79
+ The following metrics are computed on the validation dataset:
80
+ - **BLEU**: Measures translation quality based on precision and recall of n-grams.
81
+ - **METEOR**: Considers synonymy and stem matches.
82
+ - **BERTScore**: Evaluates semantic similarity with BERT embeddings.
83
 
84
+ ### Inference
85
 
86
+ Inference includes bidirectional translation capabilities:
87
+ - **Source to Target**: English to Kurdish translation.
88
+ - **Target to Source**: Kurdish to English translation.
89
 
90
+ ## Results
91
 
92
+ The fine-tuned model and tokenizer are saved to `./fine-tuned-marianmt`, including evaluation metrics across BLEU, METEOR, and BERTScore.
93
+ """
94
 
95
+ # Write the content to README.md
96
+ file_path = "/mnt/data/README.md"
97
+ with open(file_path, "w") as readme_file:
98
+ readme_file.write(readme_content)
99
 
100
+ file_path